Step |
Hyp |
Ref |
Expression |
1 |
|
trgcgrg.p |
|
2 |
|
trgcgrg.m |
|
3 |
|
trgcgrg.r |
|
4 |
|
trgcgrg.g |
|
5 |
|
iscgrglt.d |
|
6 |
|
iscgrglt.a |
|
7 |
|
iscgrglt.b |
|
8 |
1 2 3 4 5 6 7
|
iscgrgd |
|
9 |
|
simp2 |
|
10 |
9
|
3exp |
|
11 |
10
|
ralimdvva |
|
12 |
|
breq1 |
|
13 |
|
fveq2 |
|
14 |
13
|
oveq1d |
|
15 |
|
fveq2 |
|
16 |
15
|
oveq1d |
|
17 |
14 16
|
eqeq12d |
|
18 |
12 17
|
imbi12d |
|
19 |
|
breq2 |
|
20 |
|
fveq2 |
|
21 |
20
|
oveq2d |
|
22 |
|
fveq2 |
|
23 |
22
|
oveq2d |
|
24 |
21 23
|
eqeq12d |
|
25 |
19 24
|
imbi12d |
|
26 |
18 25
|
cbvral2vw |
|
27 |
|
simpllr |
|
28 |
|
simplr |
|
29 |
|
simp-4r |
|
30 |
27 28 29
|
jca31 |
|
31 |
|
simpr |
|
32 |
18 25
|
rspc2va |
|
33 |
30 31 32
|
sylc |
|
34 |
|
eqid |
|
35 |
4
|
ad3antrrr |
|
36 |
6
|
ad2antrr |
|
37 |
|
simplr |
|
38 |
36
|
fdmd |
|
39 |
37 38
|
eleqtrd |
|
40 |
36 39
|
ffvelrnd |
|
41 |
40
|
adantr |
|
42 |
7
|
ad2antrr |
|
43 |
42 39
|
ffvelrnd |
|
44 |
43
|
adantr |
|
45 |
1 2 34 35 41 44
|
tgcgrtriv |
|
46 |
|
simpr |
|
47 |
46
|
fveq2d |
|
48 |
47
|
oveq2d |
|
49 |
46
|
fveq2d |
|
50 |
49
|
oveq2d |
|
51 |
45 48 50
|
3eqtr3d |
|
52 |
51
|
adantl3r |
|
53 |
4
|
ad4antr |
|
54 |
|
simpr |
|
55 |
54 38
|
eleqtrd |
|
56 |
36 55
|
ffvelrnd |
|
57 |
56
|
adantr |
|
58 |
57
|
adantl3r |
|
59 |
40
|
adantr |
|
60 |
59
|
adantl3r |
|
61 |
42 55
|
ffvelrnd |
|
62 |
61
|
adantr |
|
63 |
62
|
adantl3r |
|
64 |
43
|
adantr |
|
65 |
64
|
adantl3r |
|
66 |
|
simplr |
|
67 |
|
simpllr |
|
68 |
|
simp-4r |
|
69 |
66 67 68
|
jca31 |
|
70 |
|
simpr |
|
71 |
|
breq1 |
|
72 |
|
fveq2 |
|
73 |
72
|
oveq1d |
|
74 |
|
fveq2 |
|
75 |
74
|
oveq1d |
|
76 |
73 75
|
eqeq12d |
|
77 |
71 76
|
imbi12d |
|
78 |
|
breq2 |
|
79 |
|
fveq2 |
|
80 |
79
|
oveq2d |
|
81 |
|
fveq2 |
|
82 |
81
|
oveq2d |
|
83 |
80 82
|
eqeq12d |
|
84 |
78 83
|
imbi12d |
|
85 |
77 84
|
rspc2va |
|
86 |
69 70 85
|
sylc |
|
87 |
1 2 34 53 58 60 63 65 86
|
tgcgrcomlr |
|
88 |
6
|
fdmd |
|
89 |
88 5
|
eqsstrd |
|
90 |
89
|
ad3antrrr |
|
91 |
|
simplr |
|
92 |
90 91
|
sseldd |
|
93 |
|
simpr |
|
94 |
90 93
|
sseldd |
|
95 |
92 94
|
lttri4d |
|
96 |
33 52 87 95
|
mpjao3dan |
|
97 |
96
|
anasss |
|
98 |
97
|
ralrimivva |
|
99 |
98
|
ex |
|
100 |
26 99
|
syl5bir |
|
101 |
11 100
|
impbid |
|
102 |
8 101
|
bitrd |
|