| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trgcgrg.p |
|
| 2 |
|
trgcgrg.m |
|
| 3 |
|
trgcgrg.r |
|
| 4 |
|
trgcgrg.g |
|
| 5 |
|
iscgrglt.d |
|
| 6 |
|
iscgrglt.a |
|
| 7 |
|
iscgrglt.b |
|
| 8 |
1 2 3 4 5 6 7
|
iscgrgd |
|
| 9 |
|
simp2 |
|
| 10 |
9
|
3exp |
|
| 11 |
10
|
ralimdvva |
|
| 12 |
|
breq1 |
|
| 13 |
|
fveq2 |
|
| 14 |
13
|
oveq1d |
|
| 15 |
|
fveq2 |
|
| 16 |
15
|
oveq1d |
|
| 17 |
14 16
|
eqeq12d |
|
| 18 |
12 17
|
imbi12d |
|
| 19 |
|
breq2 |
|
| 20 |
|
fveq2 |
|
| 21 |
20
|
oveq2d |
|
| 22 |
|
fveq2 |
|
| 23 |
22
|
oveq2d |
|
| 24 |
21 23
|
eqeq12d |
|
| 25 |
19 24
|
imbi12d |
|
| 26 |
18 25
|
cbvral2vw |
|
| 27 |
|
simpllr |
|
| 28 |
|
simplr |
|
| 29 |
|
simp-4r |
|
| 30 |
27 28 29
|
jca31 |
|
| 31 |
|
simpr |
|
| 32 |
18 25
|
rspc2va |
|
| 33 |
30 31 32
|
sylc |
|
| 34 |
|
eqid |
|
| 35 |
4
|
ad3antrrr |
|
| 36 |
6
|
ad2antrr |
|
| 37 |
|
simplr |
|
| 38 |
36
|
fdmd |
|
| 39 |
37 38
|
eleqtrd |
|
| 40 |
36 39
|
ffvelcdmd |
|
| 41 |
40
|
adantr |
|
| 42 |
7
|
ad2antrr |
|
| 43 |
42 39
|
ffvelcdmd |
|
| 44 |
43
|
adantr |
|
| 45 |
1 2 34 35 41 44
|
tgcgrtriv |
|
| 46 |
|
simpr |
|
| 47 |
46
|
fveq2d |
|
| 48 |
47
|
oveq2d |
|
| 49 |
46
|
fveq2d |
|
| 50 |
49
|
oveq2d |
|
| 51 |
45 48 50
|
3eqtr3d |
|
| 52 |
51
|
adantl3r |
|
| 53 |
4
|
ad4antr |
|
| 54 |
|
simpr |
|
| 55 |
54 38
|
eleqtrd |
|
| 56 |
36 55
|
ffvelcdmd |
|
| 57 |
56
|
adantr |
|
| 58 |
57
|
adantl3r |
|
| 59 |
40
|
adantr |
|
| 60 |
59
|
adantl3r |
|
| 61 |
42 55
|
ffvelcdmd |
|
| 62 |
61
|
adantr |
|
| 63 |
62
|
adantl3r |
|
| 64 |
43
|
adantr |
|
| 65 |
64
|
adantl3r |
|
| 66 |
|
simplr |
|
| 67 |
|
simpllr |
|
| 68 |
|
simp-4r |
|
| 69 |
66 67 68
|
jca31 |
|
| 70 |
|
simpr |
|
| 71 |
|
breq1 |
|
| 72 |
|
fveq2 |
|
| 73 |
72
|
oveq1d |
|
| 74 |
|
fveq2 |
|
| 75 |
74
|
oveq1d |
|
| 76 |
73 75
|
eqeq12d |
|
| 77 |
71 76
|
imbi12d |
|
| 78 |
|
breq2 |
|
| 79 |
|
fveq2 |
|
| 80 |
79
|
oveq2d |
|
| 81 |
|
fveq2 |
|
| 82 |
81
|
oveq2d |
|
| 83 |
80 82
|
eqeq12d |
|
| 84 |
78 83
|
imbi12d |
|
| 85 |
77 84
|
rspc2va |
|
| 86 |
69 70 85
|
sylc |
|
| 87 |
1 2 34 53 58 60 63 65 86
|
tgcgrcomlr |
|
| 88 |
6
|
fdmd |
|
| 89 |
88 5
|
eqsstrd |
|
| 90 |
89
|
ad3antrrr |
|
| 91 |
|
simplr |
|
| 92 |
90 91
|
sseldd |
|
| 93 |
|
simpr |
|
| 94 |
90 93
|
sseldd |
|
| 95 |
92 94
|
lttri4d |
|
| 96 |
33 52 87 95
|
mpjao3dan |
|
| 97 |
96
|
anasss |
|
| 98 |
97
|
ralrimivva |
|
| 99 |
98
|
ex |
|
| 100 |
26 99
|
biimtrrid |
|
| 101 |
11 100
|
impbid |
|
| 102 |
8 101
|
bitrd |
|