| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trgcgrg.p |
|
| 2 |
|
trgcgrg.m |
|
| 3 |
|
trgcgrg.r |
|
| 4 |
|
trgcgrg.g |
|
| 5 |
|
trgcgrg.a |
|
| 6 |
|
trgcgrg.b |
|
| 7 |
|
trgcgrg.c |
|
| 8 |
|
trgcgrg.d |
|
| 9 |
|
trgcgrg.e |
|
| 10 |
|
trgcgrg.f |
|
| 11 |
5 6 7
|
s3cld |
|
| 12 |
|
wrdf |
|
| 13 |
11 12
|
syl |
|
| 14 |
|
s3len |
|
| 15 |
14
|
oveq2i |
|
| 16 |
|
fzo0to3tp |
|
| 17 |
15 16
|
eqtri |
|
| 18 |
17
|
feq2i |
|
| 19 |
13 18
|
sylib |
|
| 20 |
19
|
fdmd |
|
| 21 |
20
|
raleqdv |
|
| 22 |
20 21
|
raleqbidv |
|
| 23 |
|
0re |
|
| 24 |
|
1re |
|
| 25 |
|
2re |
|
| 26 |
|
tpssi |
|
| 27 |
23 24 25 26
|
mp3an |
|
| 28 |
27
|
a1i |
|
| 29 |
8 9 10
|
s3cld |
|
| 30 |
|
wrdf |
|
| 31 |
29 30
|
syl |
|
| 32 |
|
s3len |
|
| 33 |
32
|
oveq2i |
|
| 34 |
33 16
|
eqtri |
|
| 35 |
34
|
feq2i |
|
| 36 |
31 35
|
sylib |
|
| 37 |
1 2 3 4 28 19 36
|
iscgrgd |
|
| 38 |
|
fveq2 |
|
| 39 |
|
s3fv0 |
|
| 40 |
5 39
|
syl |
|
| 41 |
38 40
|
sylan9eqr |
|
| 42 |
41
|
oveq2d |
|
| 43 |
|
fveq2 |
|
| 44 |
|
s3fv0 |
|
| 45 |
8 44
|
syl |
|
| 46 |
43 45
|
sylan9eqr |
|
| 47 |
46
|
oveq2d |
|
| 48 |
42 47
|
eqeq12d |
|
| 49 |
|
fveq2 |
|
| 50 |
|
s3fv1 |
|
| 51 |
6 50
|
syl |
|
| 52 |
49 51
|
sylan9eqr |
|
| 53 |
52
|
oveq2d |
|
| 54 |
|
fveq2 |
|
| 55 |
|
s3fv1 |
|
| 56 |
9 55
|
syl |
|
| 57 |
54 56
|
sylan9eqr |
|
| 58 |
57
|
oveq2d |
|
| 59 |
53 58
|
eqeq12d |
|
| 60 |
|
fveq2 |
|
| 61 |
|
s3fv2 |
|
| 62 |
7 61
|
syl |
|
| 63 |
60 62
|
sylan9eqr |
|
| 64 |
63
|
oveq2d |
|
| 65 |
|
fveq2 |
|
| 66 |
|
s3fv2 |
|
| 67 |
10 66
|
syl |
|
| 68 |
65 67
|
sylan9eqr |
|
| 69 |
68
|
oveq2d |
|
| 70 |
64 69
|
eqeq12d |
|
| 71 |
|
0red |
|
| 72 |
|
1red |
|
| 73 |
25
|
a1i |
|
| 74 |
48 59 70 71 72 73
|
raltpd |
|
| 75 |
74
|
adantr |
|
| 76 |
|
fveq2 |
|
| 77 |
76
|
adantl |
|
| 78 |
40
|
adantr |
|
| 79 |
77 78
|
eqtr2d |
|
| 80 |
79
|
oveq1d |
|
| 81 |
|
fveq2 |
|
| 82 |
81
|
adantl |
|
| 83 |
45
|
adantr |
|
| 84 |
82 83
|
eqtr2d |
|
| 85 |
84
|
oveq1d |
|
| 86 |
80 85
|
eqeq12d |
|
| 87 |
79
|
oveq1d |
|
| 88 |
84
|
oveq1d |
|
| 89 |
87 88
|
eqeq12d |
|
| 90 |
79
|
oveq1d |
|
| 91 |
84
|
oveq1d |
|
| 92 |
90 91
|
eqeq12d |
|
| 93 |
86 89 92
|
3anbi123d |
|
| 94 |
75 93
|
bitr4d |
|
| 95 |
74
|
adantr |
|
| 96 |
|
fveq2 |
|
| 97 |
96
|
adantl |
|
| 98 |
51
|
adantr |
|
| 99 |
97 98
|
eqtr2d |
|
| 100 |
99
|
oveq1d |
|
| 101 |
|
fveq2 |
|
| 102 |
101
|
adantl |
|
| 103 |
56
|
adantr |
|
| 104 |
102 103
|
eqtr2d |
|
| 105 |
104
|
oveq1d |
|
| 106 |
100 105
|
eqeq12d |
|
| 107 |
99
|
oveq1d |
|
| 108 |
104
|
oveq1d |
|
| 109 |
107 108
|
eqeq12d |
|
| 110 |
99
|
oveq1d |
|
| 111 |
104
|
oveq1d |
|
| 112 |
110 111
|
eqeq12d |
|
| 113 |
106 109 112
|
3anbi123d |
|
| 114 |
95 113
|
bitr4d |
|
| 115 |
74
|
adantr |
|
| 116 |
|
fveq2 |
|
| 117 |
116
|
adantl |
|
| 118 |
62
|
adantr |
|
| 119 |
117 118
|
eqtr2d |
|
| 120 |
119
|
oveq1d |
|
| 121 |
|
fveq2 |
|
| 122 |
121
|
adantl |
|
| 123 |
67
|
adantr |
|
| 124 |
122 123
|
eqtr2d |
|
| 125 |
124
|
oveq1d |
|
| 126 |
120 125
|
eqeq12d |
|
| 127 |
119
|
oveq1d |
|
| 128 |
124
|
oveq1d |
|
| 129 |
127 128
|
eqeq12d |
|
| 130 |
119
|
oveq1d |
|
| 131 |
124
|
oveq1d |
|
| 132 |
130 131
|
eqeq12d |
|
| 133 |
126 129 132
|
3anbi123d |
|
| 134 |
115 133
|
bitr4d |
|
| 135 |
94 114 134 71 72 73
|
raltpd |
|
| 136 |
|
an33rean |
|
| 137 |
|
eqid |
|
| 138 |
1 2 137 4 5 8
|
tgcgrtriv |
|
| 139 |
1 2 137 4 6 9
|
tgcgrtriv |
|
| 140 |
1 2 137 4 7 10
|
tgcgrtriv |
|
| 141 |
138 139 140
|
3jca |
|
| 142 |
141
|
biantrurd |
|
| 143 |
|
simprl |
|
| 144 |
|
simpr |
|
| 145 |
4
|
adantr |
|
| 146 |
5
|
adantr |
|
| 147 |
6
|
adantr |
|
| 148 |
8
|
adantr |
|
| 149 |
9
|
adantr |
|
| 150 |
1 2 137 145 146 147 148 149 144
|
tgcgrcomlr |
|
| 151 |
144 150
|
jca |
|
| 152 |
143 151
|
impbida |
|
| 153 |
|
simprl |
|
| 154 |
|
simpr |
|
| 155 |
4
|
adantr |
|
| 156 |
6
|
adantr |
|
| 157 |
7
|
adantr |
|
| 158 |
9
|
adantr |
|
| 159 |
10
|
adantr |
|
| 160 |
1 2 137 155 156 157 158 159 154
|
tgcgrcomlr |
|
| 161 |
154 160
|
jca |
|
| 162 |
153 161
|
impbida |
|
| 163 |
|
simprr |
|
| 164 |
4
|
adantr |
|
| 165 |
7
|
adantr |
|
| 166 |
5
|
adantr |
|
| 167 |
10
|
adantr |
|
| 168 |
8
|
adantr |
|
| 169 |
|
simpr |
|
| 170 |
1 2 137 164 165 166 167 168 169
|
tgcgrcomlr |
|
| 171 |
170 169
|
jca |
|
| 172 |
163 171
|
impbida |
|
| 173 |
152 162 172
|
3anbi123d |
|
| 174 |
142 173
|
bitr3d |
|
| 175 |
136 174
|
bitrid |
|
| 176 |
135 175
|
bitr2d |
|
| 177 |
22 37 176
|
3bitr4d |
|