| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trgcgrg.p |
|- P = ( Base ` G ) |
| 2 |
|
trgcgrg.m |
|- .- = ( dist ` G ) |
| 3 |
|
trgcgrg.r |
|- .~ = ( cgrG ` G ) |
| 4 |
|
trgcgrg.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
trgcgrg.a |
|- ( ph -> A e. P ) |
| 6 |
|
trgcgrg.b |
|- ( ph -> B e. P ) |
| 7 |
|
trgcgrg.c |
|- ( ph -> C e. P ) |
| 8 |
|
trgcgrg.d |
|- ( ph -> D e. P ) |
| 9 |
|
trgcgrg.e |
|- ( ph -> E e. P ) |
| 10 |
|
trgcgrg.f |
|- ( ph -> F e. P ) |
| 11 |
5 6 7
|
s3cld |
|- ( ph -> <" A B C "> e. Word P ) |
| 12 |
|
wrdf |
|- ( <" A B C "> e. Word P -> <" A B C "> : ( 0 ..^ ( # ` <" A B C "> ) ) --> P ) |
| 13 |
11 12
|
syl |
|- ( ph -> <" A B C "> : ( 0 ..^ ( # ` <" A B C "> ) ) --> P ) |
| 14 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
| 15 |
14
|
oveq2i |
|- ( 0 ..^ ( # ` <" A B C "> ) ) = ( 0 ..^ 3 ) |
| 16 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 17 |
15 16
|
eqtri |
|- ( 0 ..^ ( # ` <" A B C "> ) ) = { 0 , 1 , 2 } |
| 18 |
17
|
feq2i |
|- ( <" A B C "> : ( 0 ..^ ( # ` <" A B C "> ) ) --> P <-> <" A B C "> : { 0 , 1 , 2 } --> P ) |
| 19 |
13 18
|
sylib |
|- ( ph -> <" A B C "> : { 0 , 1 , 2 } --> P ) |
| 20 |
19
|
fdmd |
|- ( ph -> dom <" A B C "> = { 0 , 1 , 2 } ) |
| 21 |
20
|
raleqdv |
|- ( ph -> ( A. j e. dom <" A B C "> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) ) ) |
| 22 |
20 21
|
raleqbidv |
|- ( ph -> ( A. i e. dom <" A B C "> A. j e. dom <" A B C "> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> A. i e. { 0 , 1 , 2 } A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) ) ) |
| 23 |
|
0re |
|- 0 e. RR |
| 24 |
|
1re |
|- 1 e. RR |
| 25 |
|
2re |
|- 2 e. RR |
| 26 |
|
tpssi |
|- ( ( 0 e. RR /\ 1 e. RR /\ 2 e. RR ) -> { 0 , 1 , 2 } C_ RR ) |
| 27 |
23 24 25 26
|
mp3an |
|- { 0 , 1 , 2 } C_ RR |
| 28 |
27
|
a1i |
|- ( ph -> { 0 , 1 , 2 } C_ RR ) |
| 29 |
8 9 10
|
s3cld |
|- ( ph -> <" D E F "> e. Word P ) |
| 30 |
|
wrdf |
|- ( <" D E F "> e. Word P -> <" D E F "> : ( 0 ..^ ( # ` <" D E F "> ) ) --> P ) |
| 31 |
29 30
|
syl |
|- ( ph -> <" D E F "> : ( 0 ..^ ( # ` <" D E F "> ) ) --> P ) |
| 32 |
|
s3len |
|- ( # ` <" D E F "> ) = 3 |
| 33 |
32
|
oveq2i |
|- ( 0 ..^ ( # ` <" D E F "> ) ) = ( 0 ..^ 3 ) |
| 34 |
33 16
|
eqtri |
|- ( 0 ..^ ( # ` <" D E F "> ) ) = { 0 , 1 , 2 } |
| 35 |
34
|
feq2i |
|- ( <" D E F "> : ( 0 ..^ ( # ` <" D E F "> ) ) --> P <-> <" D E F "> : { 0 , 1 , 2 } --> P ) |
| 36 |
31 35
|
sylib |
|- ( ph -> <" D E F "> : { 0 , 1 , 2 } --> P ) |
| 37 |
1 2 3 4 28 19 36
|
iscgrgd |
|- ( ph -> ( <" A B C "> .~ <" D E F "> <-> A. i e. dom <" A B C "> A. j e. dom <" A B C "> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) ) ) |
| 38 |
|
fveq2 |
|- ( j = 0 -> ( <" A B C "> ` j ) = ( <" A B C "> ` 0 ) ) |
| 39 |
|
s3fv0 |
|- ( A e. P -> ( <" A B C "> ` 0 ) = A ) |
| 40 |
5 39
|
syl |
|- ( ph -> ( <" A B C "> ` 0 ) = A ) |
| 41 |
38 40
|
sylan9eqr |
|- ( ( ph /\ j = 0 ) -> ( <" A B C "> ` j ) = A ) |
| 42 |
41
|
oveq2d |
|- ( ( ph /\ j = 0 ) -> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" A B C "> ` i ) .- A ) ) |
| 43 |
|
fveq2 |
|- ( j = 0 -> ( <" D E F "> ` j ) = ( <" D E F "> ` 0 ) ) |
| 44 |
|
s3fv0 |
|- ( D e. P -> ( <" D E F "> ` 0 ) = D ) |
| 45 |
8 44
|
syl |
|- ( ph -> ( <" D E F "> ` 0 ) = D ) |
| 46 |
43 45
|
sylan9eqr |
|- ( ( ph /\ j = 0 ) -> ( <" D E F "> ` j ) = D ) |
| 47 |
46
|
oveq2d |
|- ( ( ph /\ j = 0 ) -> ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) = ( ( <" D E F "> ` i ) .- D ) ) |
| 48 |
42 47
|
eqeq12d |
|- ( ( ph /\ j = 0 ) -> ( ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) ) ) |
| 49 |
|
fveq2 |
|- ( j = 1 -> ( <" A B C "> ` j ) = ( <" A B C "> ` 1 ) ) |
| 50 |
|
s3fv1 |
|- ( B e. P -> ( <" A B C "> ` 1 ) = B ) |
| 51 |
6 50
|
syl |
|- ( ph -> ( <" A B C "> ` 1 ) = B ) |
| 52 |
49 51
|
sylan9eqr |
|- ( ( ph /\ j = 1 ) -> ( <" A B C "> ` j ) = B ) |
| 53 |
52
|
oveq2d |
|- ( ( ph /\ j = 1 ) -> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" A B C "> ` i ) .- B ) ) |
| 54 |
|
fveq2 |
|- ( j = 1 -> ( <" D E F "> ` j ) = ( <" D E F "> ` 1 ) ) |
| 55 |
|
s3fv1 |
|- ( E e. P -> ( <" D E F "> ` 1 ) = E ) |
| 56 |
9 55
|
syl |
|- ( ph -> ( <" D E F "> ` 1 ) = E ) |
| 57 |
54 56
|
sylan9eqr |
|- ( ( ph /\ j = 1 ) -> ( <" D E F "> ` j ) = E ) |
| 58 |
57
|
oveq2d |
|- ( ( ph /\ j = 1 ) -> ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) = ( ( <" D E F "> ` i ) .- E ) ) |
| 59 |
53 58
|
eqeq12d |
|- ( ( ph /\ j = 1 ) -> ( ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) ) ) |
| 60 |
|
fveq2 |
|- ( j = 2 -> ( <" A B C "> ` j ) = ( <" A B C "> ` 2 ) ) |
| 61 |
|
s3fv2 |
|- ( C e. P -> ( <" A B C "> ` 2 ) = C ) |
| 62 |
7 61
|
syl |
|- ( ph -> ( <" A B C "> ` 2 ) = C ) |
| 63 |
60 62
|
sylan9eqr |
|- ( ( ph /\ j = 2 ) -> ( <" A B C "> ` j ) = C ) |
| 64 |
63
|
oveq2d |
|- ( ( ph /\ j = 2 ) -> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" A B C "> ` i ) .- C ) ) |
| 65 |
|
fveq2 |
|- ( j = 2 -> ( <" D E F "> ` j ) = ( <" D E F "> ` 2 ) ) |
| 66 |
|
s3fv2 |
|- ( F e. P -> ( <" D E F "> ` 2 ) = F ) |
| 67 |
10 66
|
syl |
|- ( ph -> ( <" D E F "> ` 2 ) = F ) |
| 68 |
65 67
|
sylan9eqr |
|- ( ( ph /\ j = 2 ) -> ( <" D E F "> ` j ) = F ) |
| 69 |
68
|
oveq2d |
|- ( ( ph /\ j = 2 ) -> ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) = ( ( <" D E F "> ` i ) .- F ) ) |
| 70 |
64 69
|
eqeq12d |
|- ( ( ph /\ j = 2 ) -> ( ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) |
| 71 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 72 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 73 |
25
|
a1i |
|- ( ph -> 2 e. RR ) |
| 74 |
48 59 70 71 72 73
|
raltpd |
|- ( ph -> ( A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) /\ ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) /\ ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) ) |
| 75 |
74
|
adantr |
|- ( ( ph /\ i = 0 ) -> ( A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) /\ ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) /\ ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) ) |
| 76 |
|
fveq2 |
|- ( i = 0 -> ( <" A B C "> ` i ) = ( <" A B C "> ` 0 ) ) |
| 77 |
76
|
adantl |
|- ( ( ph /\ i = 0 ) -> ( <" A B C "> ` i ) = ( <" A B C "> ` 0 ) ) |
| 78 |
40
|
adantr |
|- ( ( ph /\ i = 0 ) -> ( <" A B C "> ` 0 ) = A ) |
| 79 |
77 78
|
eqtr2d |
|- ( ( ph /\ i = 0 ) -> A = ( <" A B C "> ` i ) ) |
| 80 |
79
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( A .- A ) = ( ( <" A B C "> ` i ) .- A ) ) |
| 81 |
|
fveq2 |
|- ( i = 0 -> ( <" D E F "> ` i ) = ( <" D E F "> ` 0 ) ) |
| 82 |
81
|
adantl |
|- ( ( ph /\ i = 0 ) -> ( <" D E F "> ` i ) = ( <" D E F "> ` 0 ) ) |
| 83 |
45
|
adantr |
|- ( ( ph /\ i = 0 ) -> ( <" D E F "> ` 0 ) = D ) |
| 84 |
82 83
|
eqtr2d |
|- ( ( ph /\ i = 0 ) -> D = ( <" D E F "> ` i ) ) |
| 85 |
84
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( D .- D ) = ( ( <" D E F "> ` i ) .- D ) ) |
| 86 |
80 85
|
eqeq12d |
|- ( ( ph /\ i = 0 ) -> ( ( A .- A ) = ( D .- D ) <-> ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) ) ) |
| 87 |
79
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( A .- B ) = ( ( <" A B C "> ` i ) .- B ) ) |
| 88 |
84
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( D .- E ) = ( ( <" D E F "> ` i ) .- E ) ) |
| 89 |
87 88
|
eqeq12d |
|- ( ( ph /\ i = 0 ) -> ( ( A .- B ) = ( D .- E ) <-> ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) ) ) |
| 90 |
79
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( A .- C ) = ( ( <" A B C "> ` i ) .- C ) ) |
| 91 |
84
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( D .- F ) = ( ( <" D E F "> ` i ) .- F ) ) |
| 92 |
90 91
|
eqeq12d |
|- ( ( ph /\ i = 0 ) -> ( ( A .- C ) = ( D .- F ) <-> ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) |
| 93 |
86 89 92
|
3anbi123d |
|- ( ( ph /\ i = 0 ) -> ( ( ( A .- A ) = ( D .- D ) /\ ( A .- B ) = ( D .- E ) /\ ( A .- C ) = ( D .- F ) ) <-> ( ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) /\ ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) /\ ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) ) |
| 94 |
75 93
|
bitr4d |
|- ( ( ph /\ i = 0 ) -> ( A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( A .- A ) = ( D .- D ) /\ ( A .- B ) = ( D .- E ) /\ ( A .- C ) = ( D .- F ) ) ) ) |
| 95 |
74
|
adantr |
|- ( ( ph /\ i = 1 ) -> ( A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) /\ ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) /\ ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) ) |
| 96 |
|
fveq2 |
|- ( i = 1 -> ( <" A B C "> ` i ) = ( <" A B C "> ` 1 ) ) |
| 97 |
96
|
adantl |
|- ( ( ph /\ i = 1 ) -> ( <" A B C "> ` i ) = ( <" A B C "> ` 1 ) ) |
| 98 |
51
|
adantr |
|- ( ( ph /\ i = 1 ) -> ( <" A B C "> ` 1 ) = B ) |
| 99 |
97 98
|
eqtr2d |
|- ( ( ph /\ i = 1 ) -> B = ( <" A B C "> ` i ) ) |
| 100 |
99
|
oveq1d |
|- ( ( ph /\ i = 1 ) -> ( B .- A ) = ( ( <" A B C "> ` i ) .- A ) ) |
| 101 |
|
fveq2 |
|- ( i = 1 -> ( <" D E F "> ` i ) = ( <" D E F "> ` 1 ) ) |
| 102 |
101
|
adantl |
|- ( ( ph /\ i = 1 ) -> ( <" D E F "> ` i ) = ( <" D E F "> ` 1 ) ) |
| 103 |
56
|
adantr |
|- ( ( ph /\ i = 1 ) -> ( <" D E F "> ` 1 ) = E ) |
| 104 |
102 103
|
eqtr2d |
|- ( ( ph /\ i = 1 ) -> E = ( <" D E F "> ` i ) ) |
| 105 |
104
|
oveq1d |
|- ( ( ph /\ i = 1 ) -> ( E .- D ) = ( ( <" D E F "> ` i ) .- D ) ) |
| 106 |
100 105
|
eqeq12d |
|- ( ( ph /\ i = 1 ) -> ( ( B .- A ) = ( E .- D ) <-> ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) ) ) |
| 107 |
99
|
oveq1d |
|- ( ( ph /\ i = 1 ) -> ( B .- B ) = ( ( <" A B C "> ` i ) .- B ) ) |
| 108 |
104
|
oveq1d |
|- ( ( ph /\ i = 1 ) -> ( E .- E ) = ( ( <" D E F "> ` i ) .- E ) ) |
| 109 |
107 108
|
eqeq12d |
|- ( ( ph /\ i = 1 ) -> ( ( B .- B ) = ( E .- E ) <-> ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) ) ) |
| 110 |
99
|
oveq1d |
|- ( ( ph /\ i = 1 ) -> ( B .- C ) = ( ( <" A B C "> ` i ) .- C ) ) |
| 111 |
104
|
oveq1d |
|- ( ( ph /\ i = 1 ) -> ( E .- F ) = ( ( <" D E F "> ` i ) .- F ) ) |
| 112 |
110 111
|
eqeq12d |
|- ( ( ph /\ i = 1 ) -> ( ( B .- C ) = ( E .- F ) <-> ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) |
| 113 |
106 109 112
|
3anbi123d |
|- ( ( ph /\ i = 1 ) -> ( ( ( B .- A ) = ( E .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( B .- C ) = ( E .- F ) ) <-> ( ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) /\ ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) /\ ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) ) |
| 114 |
95 113
|
bitr4d |
|- ( ( ph /\ i = 1 ) -> ( A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( B .- A ) = ( E .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( B .- C ) = ( E .- F ) ) ) ) |
| 115 |
74
|
adantr |
|- ( ( ph /\ i = 2 ) -> ( A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) /\ ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) /\ ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) ) |
| 116 |
|
fveq2 |
|- ( i = 2 -> ( <" A B C "> ` i ) = ( <" A B C "> ` 2 ) ) |
| 117 |
116
|
adantl |
|- ( ( ph /\ i = 2 ) -> ( <" A B C "> ` i ) = ( <" A B C "> ` 2 ) ) |
| 118 |
62
|
adantr |
|- ( ( ph /\ i = 2 ) -> ( <" A B C "> ` 2 ) = C ) |
| 119 |
117 118
|
eqtr2d |
|- ( ( ph /\ i = 2 ) -> C = ( <" A B C "> ` i ) ) |
| 120 |
119
|
oveq1d |
|- ( ( ph /\ i = 2 ) -> ( C .- A ) = ( ( <" A B C "> ` i ) .- A ) ) |
| 121 |
|
fveq2 |
|- ( i = 2 -> ( <" D E F "> ` i ) = ( <" D E F "> ` 2 ) ) |
| 122 |
121
|
adantl |
|- ( ( ph /\ i = 2 ) -> ( <" D E F "> ` i ) = ( <" D E F "> ` 2 ) ) |
| 123 |
67
|
adantr |
|- ( ( ph /\ i = 2 ) -> ( <" D E F "> ` 2 ) = F ) |
| 124 |
122 123
|
eqtr2d |
|- ( ( ph /\ i = 2 ) -> F = ( <" D E F "> ` i ) ) |
| 125 |
124
|
oveq1d |
|- ( ( ph /\ i = 2 ) -> ( F .- D ) = ( ( <" D E F "> ` i ) .- D ) ) |
| 126 |
120 125
|
eqeq12d |
|- ( ( ph /\ i = 2 ) -> ( ( C .- A ) = ( F .- D ) <-> ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) ) ) |
| 127 |
119
|
oveq1d |
|- ( ( ph /\ i = 2 ) -> ( C .- B ) = ( ( <" A B C "> ` i ) .- B ) ) |
| 128 |
124
|
oveq1d |
|- ( ( ph /\ i = 2 ) -> ( F .- E ) = ( ( <" D E F "> ` i ) .- E ) ) |
| 129 |
127 128
|
eqeq12d |
|- ( ( ph /\ i = 2 ) -> ( ( C .- B ) = ( F .- E ) <-> ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) ) ) |
| 130 |
119
|
oveq1d |
|- ( ( ph /\ i = 2 ) -> ( C .- C ) = ( ( <" A B C "> ` i ) .- C ) ) |
| 131 |
124
|
oveq1d |
|- ( ( ph /\ i = 2 ) -> ( F .- F ) = ( ( <" D E F "> ` i ) .- F ) ) |
| 132 |
130 131
|
eqeq12d |
|- ( ( ph /\ i = 2 ) -> ( ( C .- C ) = ( F .- F ) <-> ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) |
| 133 |
126 129 132
|
3anbi123d |
|- ( ( ph /\ i = 2 ) -> ( ( ( C .- A ) = ( F .- D ) /\ ( C .- B ) = ( F .- E ) /\ ( C .- C ) = ( F .- F ) ) <-> ( ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) /\ ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) /\ ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) ) |
| 134 |
115 133
|
bitr4d |
|- ( ( ph /\ i = 2 ) -> ( A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( C .- A ) = ( F .- D ) /\ ( C .- B ) = ( F .- E ) /\ ( C .- C ) = ( F .- F ) ) ) ) |
| 135 |
94 114 134 71 72 73
|
raltpd |
|- ( ph -> ( A. i e. { 0 , 1 , 2 } A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( ( A .- A ) = ( D .- D ) /\ ( A .- B ) = ( D .- E ) /\ ( A .- C ) = ( D .- F ) ) /\ ( ( B .- A ) = ( E .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( B .- C ) = ( E .- F ) ) /\ ( ( C .- A ) = ( F .- D ) /\ ( C .- B ) = ( F .- E ) /\ ( C .- C ) = ( F .- F ) ) ) ) ) |
| 136 |
|
an33rean |
|- ( ( ( ( A .- A ) = ( D .- D ) /\ ( A .- B ) = ( D .- E ) /\ ( A .- C ) = ( D .- F ) ) /\ ( ( B .- A ) = ( E .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( B .- C ) = ( E .- F ) ) /\ ( ( C .- A ) = ( F .- D ) /\ ( C .- B ) = ( F .- E ) /\ ( C .- C ) = ( F .- F ) ) ) <-> ( ( ( A .- A ) = ( D .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( C .- C ) = ( F .- F ) ) /\ ( ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) /\ ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) /\ ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) ) |
| 137 |
|
eqid |
|- ( Itv ` G ) = ( Itv ` G ) |
| 138 |
1 2 137 4 5 8
|
tgcgrtriv |
|- ( ph -> ( A .- A ) = ( D .- D ) ) |
| 139 |
1 2 137 4 6 9
|
tgcgrtriv |
|- ( ph -> ( B .- B ) = ( E .- E ) ) |
| 140 |
1 2 137 4 7 10
|
tgcgrtriv |
|- ( ph -> ( C .- C ) = ( F .- F ) ) |
| 141 |
138 139 140
|
3jca |
|- ( ph -> ( ( A .- A ) = ( D .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( C .- C ) = ( F .- F ) ) ) |
| 142 |
141
|
biantrurd |
|- ( ph -> ( ( ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) /\ ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) /\ ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) ) <-> ( ( ( A .- A ) = ( D .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( C .- C ) = ( F .- F ) ) /\ ( ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) /\ ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) /\ ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) ) ) |
| 143 |
|
simprl |
|- ( ( ph /\ ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) ) -> ( A .- B ) = ( D .- E ) ) |
| 144 |
|
simpr |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> ( A .- B ) = ( D .- E ) ) |
| 145 |
4
|
adantr |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> G e. TarskiG ) |
| 146 |
5
|
adantr |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> A e. P ) |
| 147 |
6
|
adantr |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> B e. P ) |
| 148 |
8
|
adantr |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> D e. P ) |
| 149 |
9
|
adantr |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> E e. P ) |
| 150 |
1 2 137 145 146 147 148 149 144
|
tgcgrcomlr |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> ( B .- A ) = ( E .- D ) ) |
| 151 |
144 150
|
jca |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) ) |
| 152 |
143 151
|
impbida |
|- ( ph -> ( ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) <-> ( A .- B ) = ( D .- E ) ) ) |
| 153 |
|
simprl |
|- ( ( ph /\ ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) ) -> ( B .- C ) = ( E .- F ) ) |
| 154 |
|
simpr |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> ( B .- C ) = ( E .- F ) ) |
| 155 |
4
|
adantr |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> G e. TarskiG ) |
| 156 |
6
|
adantr |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> B e. P ) |
| 157 |
7
|
adantr |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> C e. P ) |
| 158 |
9
|
adantr |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> E e. P ) |
| 159 |
10
|
adantr |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> F e. P ) |
| 160 |
1 2 137 155 156 157 158 159 154
|
tgcgrcomlr |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> ( C .- B ) = ( F .- E ) ) |
| 161 |
154 160
|
jca |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) ) |
| 162 |
153 161
|
impbida |
|- ( ph -> ( ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) <-> ( B .- C ) = ( E .- F ) ) ) |
| 163 |
|
simprr |
|- ( ( ph /\ ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) ) -> ( C .- A ) = ( F .- D ) ) |
| 164 |
4
|
adantr |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> G e. TarskiG ) |
| 165 |
7
|
adantr |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> C e. P ) |
| 166 |
5
|
adantr |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> A e. P ) |
| 167 |
10
|
adantr |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> F e. P ) |
| 168 |
8
|
adantr |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> D e. P ) |
| 169 |
|
simpr |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> ( C .- A ) = ( F .- D ) ) |
| 170 |
1 2 137 164 165 166 167 168 169
|
tgcgrcomlr |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> ( A .- C ) = ( D .- F ) ) |
| 171 |
170 169
|
jca |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) ) |
| 172 |
163 171
|
impbida |
|- ( ph -> ( ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) <-> ( C .- A ) = ( F .- D ) ) ) |
| 173 |
152 162 172
|
3anbi123d |
|- ( ph -> ( ( ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) /\ ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) /\ ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) ) <-> ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) |
| 174 |
142 173
|
bitr3d |
|- ( ph -> ( ( ( ( A .- A ) = ( D .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( C .- C ) = ( F .- F ) ) /\ ( ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) /\ ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) /\ ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) <-> ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) |
| 175 |
136 174
|
bitrid |
|- ( ph -> ( ( ( ( A .- A ) = ( D .- D ) /\ ( A .- B ) = ( D .- E ) /\ ( A .- C ) = ( D .- F ) ) /\ ( ( B .- A ) = ( E .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( B .- C ) = ( E .- F ) ) /\ ( ( C .- A ) = ( F .- D ) /\ ( C .- B ) = ( F .- E ) /\ ( C .- C ) = ( F .- F ) ) ) <-> ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) |
| 176 |
135 175
|
bitr2d |
|- ( ph -> ( ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) <-> A. i e. { 0 , 1 , 2 } A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) ) ) |
| 177 |
22 37 176
|
3bitr4d |
|- ( ph -> ( <" A B C "> .~ <" D E F "> <-> ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) |