Step |
Hyp |
Ref |
Expression |
1 |
|
iscgrg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
iscgrg.m |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
iscgrg.e |
⊢ ∼ = ( cgrG ‘ 𝐺 ) |
4 |
|
iscgrgd.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
5 |
|
iscgrgd.d |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
6 |
|
iscgrgd.a |
⊢ ( 𝜑 → 𝐴 : 𝐷 ⟶ 𝑃 ) |
7 |
|
iscgrgd.b |
⊢ ( 𝜑 → 𝐵 : 𝐷 ⟶ 𝑃 ) |
8 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
9 |
|
reex |
⊢ ℝ ∈ V |
10 |
|
elpm2r |
⊢ ( ( ( 𝑃 ∈ V ∧ ℝ ∈ V ) ∧ ( 𝐴 : 𝐷 ⟶ 𝑃 ∧ 𝐷 ⊆ ℝ ) ) → 𝐴 ∈ ( 𝑃 ↑pm ℝ ) ) |
11 |
8 9 10
|
mpanl12 |
⊢ ( ( 𝐴 : 𝐷 ⟶ 𝑃 ∧ 𝐷 ⊆ ℝ ) → 𝐴 ∈ ( 𝑃 ↑pm ℝ ) ) |
12 |
6 5 11
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑃 ↑pm ℝ ) ) |
13 |
|
elpm2r |
⊢ ( ( ( 𝑃 ∈ V ∧ ℝ ∈ V ) ∧ ( 𝐵 : 𝐷 ⟶ 𝑃 ∧ 𝐷 ⊆ ℝ ) ) → 𝐵 ∈ ( 𝑃 ↑pm ℝ ) ) |
14 |
8 9 13
|
mpanl12 |
⊢ ( ( 𝐵 : 𝐷 ⟶ 𝑃 ∧ 𝐷 ⊆ ℝ ) → 𝐵 ∈ ( 𝑃 ↑pm ℝ ) ) |
15 |
7 5 14
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑃 ↑pm ℝ ) ) |
16 |
12 15
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝑃 ↑pm ℝ ) ∧ 𝐵 ∈ ( 𝑃 ↑pm ℝ ) ) ) |
17 |
16
|
biantrurd |
⊢ ( 𝜑 → ( ( dom 𝐴 = dom 𝐵 ∧ ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ( 𝑃 ↑pm ℝ ) ∧ 𝐵 ∈ ( 𝑃 ↑pm ℝ ) ) ∧ ( dom 𝐴 = dom 𝐵 ∧ ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
18 |
6
|
fdmd |
⊢ ( 𝜑 → dom 𝐴 = 𝐷 ) |
19 |
7
|
fdmd |
⊢ ( 𝜑 → dom 𝐵 = 𝐷 ) |
20 |
18 19
|
eqtr4d |
⊢ ( 𝜑 → dom 𝐴 = dom 𝐵 ) |
21 |
20
|
biantrurd |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ↔ ( dom 𝐴 = dom 𝐵 ∧ ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
22 |
1 2 3
|
iscgrg |
⊢ ( 𝐺 ∈ 𝑉 → ( 𝐴 ∼ 𝐵 ↔ ( ( 𝐴 ∈ ( 𝑃 ↑pm ℝ ) ∧ 𝐵 ∈ ( 𝑃 ↑pm ℝ ) ) ∧ ( dom 𝐴 = dom 𝐵 ∧ ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
23 |
4 22
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∼ 𝐵 ↔ ( ( 𝐴 ∈ ( 𝑃 ↑pm ℝ ) ∧ 𝐵 ∈ ( 𝑃 ↑pm ℝ ) ) ∧ ( dom 𝐴 = dom 𝐵 ∧ ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
24 |
17 21 23
|
3bitr4rd |
⊢ ( 𝜑 → ( 𝐴 ∼ 𝐵 ↔ ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) |