Description: Commutative law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgcgrxfr.p | |
|
tgcgrxfr.m | |
||
tgcgrxfr.i | |
||
tgcgrxfr.r | |
||
tgcgrxfr.g | |
||
tgbtwnxfr.a | |
||
tgbtwnxfr.b | |
||
tgbtwnxfr.c | |
||
tgbtwnxfr.d | |
||
tgbtwnxfr.e | |
||
tgbtwnxfr.f | |
||
tgbtwnxfr.2 | |
||
Assertion | trgcgrcom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrxfr.p | |
|
2 | tgcgrxfr.m | |
|
3 | tgcgrxfr.i | |
|
4 | tgcgrxfr.r | |
|
5 | tgcgrxfr.g | |
|
6 | tgbtwnxfr.a | |
|
7 | tgbtwnxfr.b | |
|
8 | tgbtwnxfr.c | |
|
9 | tgbtwnxfr.d | |
|
10 | tgbtwnxfr.e | |
|
11 | tgbtwnxfr.f | |
|
12 | tgbtwnxfr.2 | |
|
13 | 1 2 3 4 5 6 7 8 9 10 11 12 | cgr3simp1 | |
14 | 13 | eqcomd | |
15 | 1 2 3 4 5 6 7 8 9 10 11 12 | cgr3simp2 | |
16 | 15 | eqcomd | |
17 | 1 2 3 4 5 6 7 8 9 10 11 12 | cgr3simp3 | |
18 | 17 | eqcomd | |
19 | 1 2 4 5 9 10 11 6 7 8 14 16 18 | trgcgr | |