Description: Value of the second Chebyshev function, or summatory of the von Mangoldt function. (Contributed by Thierry Arnoux, 28-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chpvalz | ⊢ ( 𝑁 ∈ ℤ → ( ψ ‘ 𝑁 ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑛 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 2 | chpval | ⊢ ( 𝑁 ∈ ℝ → ( ψ ‘ 𝑁 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑁 ) ) ( Λ ‘ 𝑛 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ℤ → ( ψ ‘ 𝑁 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑁 ) ) ( Λ ‘ 𝑛 ) ) | 
| 4 | flid | ⊢ ( 𝑁 ∈ ℤ → ( ⌊ ‘ 𝑁 ) = 𝑁 ) | |
| 5 | 4 | oveq2d | ⊢ ( 𝑁 ∈ ℤ → ( 1 ... ( ⌊ ‘ 𝑁 ) ) = ( 1 ... 𝑁 ) ) | 
| 6 | 5 | sumeq1d | ⊢ ( 𝑁 ∈ ℤ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑁 ) ) ( Λ ‘ 𝑛 ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑛 ) ) | 
| 7 | 3 6 | eqtrd | ⊢ ( 𝑁 ∈ ℤ → ( ψ ‘ 𝑁 ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑛 ) ) |