| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 2 |
|
chtval |
⊢ ( 𝑁 ∈ ℝ → ( θ ‘ 𝑁 ) = Σ 𝑛 ∈ ( ( 0 [,] 𝑁 ) ∩ ℙ ) ( log ‘ 𝑛 ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ ℤ → ( θ ‘ 𝑁 ) = Σ 𝑛 ∈ ( ( 0 [,] 𝑁 ) ∩ ℙ ) ( log ‘ 𝑛 ) ) |
| 4 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 5 |
|
ppisval |
⊢ ( 𝑁 ∈ ℝ → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝑁 ) ) ∩ ℙ ) ) |
| 6 |
1 5
|
syl |
⊢ ( 𝑁 ∈ ℤ → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝑁 ) ) ∩ ℙ ) ) |
| 7 |
|
flid |
⊢ ( 𝑁 ∈ ℤ → ( ⌊ ‘ 𝑁 ) = 𝑁 ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝑁 ∈ ℤ → ( 2 ... ( ⌊ ‘ 𝑁 ) ) = ( 2 ... 𝑁 ) ) |
| 9 |
8
|
ineq1d |
⊢ ( 𝑁 ∈ ℤ → ( ( 2 ... ( ⌊ ‘ 𝑁 ) ) ∩ ℙ ) = ( ( 2 ... 𝑁 ) ∩ ℙ ) ) |
| 10 |
6 9
|
eqtrd |
⊢ ( 𝑁 ∈ ℤ → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ( 2 ... 𝑁 ) ∩ ℙ ) ) |
| 11 |
4 10
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ( 2 ... 𝑁 ) ∩ ℙ ) ) |
| 12 |
|
2nn |
⊢ 2 ∈ ℕ |
| 13 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 14 |
12 13
|
eleqtri |
⊢ 2 ∈ ( ℤ≥ ‘ 1 ) |
| 15 |
|
fzss1 |
⊢ ( 2 ∈ ( ℤ≥ ‘ 1 ) → ( 2 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ) |
| 16 |
14 15
|
ax-mp |
⊢ ( 2 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) |
| 17 |
|
ssdif0 |
⊢ ( ( 2 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ↔ ( ( 2 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) = ∅ ) |
| 18 |
16 17
|
mpbi |
⊢ ( ( 2 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) = ∅ |
| 19 |
18
|
ineq1i |
⊢ ( ( ( 2 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ∩ ℙ ) = ( ∅ ∩ ℙ ) |
| 20 |
|
0in |
⊢ ( ∅ ∩ ℙ ) = ∅ |
| 21 |
19 20
|
eqtri |
⊢ ( ( ( 2 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ∩ ℙ ) = ∅ |
| 22 |
21
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ∩ ℙ ) = ∅ ) |
| 23 |
13
|
eleq2i |
⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 24 |
|
fzpred |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... 𝑁 ) = ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) ) ) |
| 25 |
23 24
|
sylbi |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) = ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) ) ) |
| 26 |
25
|
eqcomd |
⊢ ( 𝑁 ∈ ℕ → ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
| 27 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 28 |
27
|
oveq1i |
⊢ ( ( 1 + 1 ) ... 𝑁 ) = ( 2 ... 𝑁 ) |
| 29 |
28
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 + 1 ) ... 𝑁 ) = ( 2 ... 𝑁 ) ) |
| 30 |
26 29
|
difeq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) ) ∖ ( ( 1 + 1 ) ... 𝑁 ) ) = ( ( 1 ... 𝑁 ) ∖ ( 2 ... 𝑁 ) ) ) |
| 31 |
|
difun2 |
⊢ ( ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) ) ∖ ( ( 1 + 1 ) ... 𝑁 ) ) = ( { 1 } ∖ ( ( 1 + 1 ) ... 𝑁 ) ) |
| 32 |
|
fzpreddisj |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( { 1 } ∩ ( ( 1 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 33 |
23 32
|
sylbi |
⊢ ( 𝑁 ∈ ℕ → ( { 1 } ∩ ( ( 1 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 34 |
|
disjdif2 |
⊢ ( ( { 1 } ∩ ( ( 1 + 1 ) ... 𝑁 ) ) = ∅ → ( { 1 } ∖ ( ( 1 + 1 ) ... 𝑁 ) ) = { 1 } ) |
| 35 |
33 34
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( { 1 } ∖ ( ( 1 + 1 ) ... 𝑁 ) ) = { 1 } ) |
| 36 |
31 35
|
eqtrid |
⊢ ( 𝑁 ∈ ℕ → ( ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) ) ∖ ( ( 1 + 1 ) ... 𝑁 ) ) = { 1 } ) |
| 37 |
30 36
|
eqtr3d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 ... 𝑁 ) ∖ ( 2 ... 𝑁 ) ) = { 1 } ) |
| 38 |
37
|
ineq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 ... 𝑁 ) ∖ ( 2 ... 𝑁 ) ) ∩ ℙ ) = ( { 1 } ∩ ℙ ) ) |
| 39 |
|
incom |
⊢ ( ℙ ∩ { 1 } ) = ( { 1 } ∩ ℙ ) |
| 40 |
|
1nprm |
⊢ ¬ 1 ∈ ℙ |
| 41 |
|
disjsn |
⊢ ( ( ℙ ∩ { 1 } ) = ∅ ↔ ¬ 1 ∈ ℙ ) |
| 42 |
40 41
|
mpbir |
⊢ ( ℙ ∩ { 1 } ) = ∅ |
| 43 |
39 42
|
eqtr3i |
⊢ ( { 1 } ∩ ℙ ) = ∅ |
| 44 |
38 43
|
eqtrdi |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 ... 𝑁 ) ∖ ( 2 ... 𝑁 ) ) ∩ ℙ ) = ∅ ) |
| 45 |
|
difininv |
⊢ ( ( ( ( ( 2 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ∩ ℙ ) = ∅ ∧ ( ( ( 1 ... 𝑁 ) ∖ ( 2 ... 𝑁 ) ) ∩ ℙ ) = ∅ ) → ( ( 2 ... 𝑁 ) ∩ ℙ ) = ( ( 1 ... 𝑁 ) ∩ ℙ ) ) |
| 46 |
22 44 45
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 ... 𝑁 ) ∩ ℙ ) = ( ( 1 ... 𝑁 ) ∩ ℙ ) ) |
| 47 |
11 46
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ( 1 ... 𝑁 ) ∩ ℙ ) ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ( 1 ... 𝑁 ) ∩ ℙ ) ) |
| 49 |
|
znnnlt1 |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1 ) ) |
| 50 |
49
|
biimpa |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ ) → 𝑁 < 1 ) |
| 51 |
|
incom |
⊢ ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ℙ ∩ ( 0 [,] 𝑁 ) ) |
| 52 |
|
isprm3 |
⊢ ( 𝑛 ∈ ℙ ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑛 − 1 ) ) ¬ 𝑖 ∥ 𝑛 ) ) |
| 53 |
52
|
simplbi |
⊢ ( 𝑛 ∈ ℙ → 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) |
| 54 |
53
|
ssriv |
⊢ ℙ ⊆ ( ℤ≥ ‘ 2 ) |
| 55 |
12
|
nnzi |
⊢ 2 ∈ ℤ |
| 56 |
|
uzssico |
⊢ ( 2 ∈ ℤ → ( ℤ≥ ‘ 2 ) ⊆ ( 2 [,) +∞ ) ) |
| 57 |
55 56
|
ax-mp |
⊢ ( ℤ≥ ‘ 2 ) ⊆ ( 2 [,) +∞ ) |
| 58 |
54 57
|
sstri |
⊢ ℙ ⊆ ( 2 [,) +∞ ) |
| 59 |
|
incom |
⊢ ( ( 0 [,] 𝑁 ) ∩ ( 2 [,) +∞ ) ) = ( ( 2 [,) +∞ ) ∩ ( 0 [,] 𝑁 ) ) |
| 60 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 61 |
60
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → 0 ∈ ℝ* ) |
| 62 |
12
|
nnrei |
⊢ 2 ∈ ℝ |
| 63 |
62
|
rexri |
⊢ 2 ∈ ℝ* |
| 64 |
63
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → 2 ∈ ℝ* ) |
| 65 |
|
0le0 |
⊢ 0 ≤ 0 |
| 66 |
65
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → 0 ≤ 0 ) |
| 67 |
1
|
adantr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → 𝑁 ∈ ℝ ) |
| 68 |
|
1red |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → 1 ∈ ℝ ) |
| 69 |
62
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → 2 ∈ ℝ ) |
| 70 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → 𝑁 < 1 ) |
| 71 |
|
1lt2 |
⊢ 1 < 2 |
| 72 |
71
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → 1 < 2 ) |
| 73 |
67 68 69 70 72
|
lttrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → 𝑁 < 2 ) |
| 74 |
|
iccssico |
⊢ ( ( ( 0 ∈ ℝ* ∧ 2 ∈ ℝ* ) ∧ ( 0 ≤ 0 ∧ 𝑁 < 2 ) ) → ( 0 [,] 𝑁 ) ⊆ ( 0 [,) 2 ) ) |
| 75 |
61 64 66 73 74
|
syl22anc |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → ( 0 [,] 𝑁 ) ⊆ ( 0 [,) 2 ) ) |
| 76 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 77 |
|
icodisj |
⊢ ( ( 0 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 0 [,) 2 ) ∩ ( 2 [,) +∞ ) ) = ∅ ) |
| 78 |
60 63 76 77
|
mp3an |
⊢ ( ( 0 [,) 2 ) ∩ ( 2 [,) +∞ ) ) = ∅ |
| 79 |
|
ssdisj |
⊢ ( ( ( 0 [,] 𝑁 ) ⊆ ( 0 [,) 2 ) ∧ ( ( 0 [,) 2 ) ∩ ( 2 [,) +∞ ) ) = ∅ ) → ( ( 0 [,] 𝑁 ) ∩ ( 2 [,) +∞ ) ) = ∅ ) |
| 80 |
75 78 79
|
sylancl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → ( ( 0 [,] 𝑁 ) ∩ ( 2 [,) +∞ ) ) = ∅ ) |
| 81 |
59 80
|
eqtr3id |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → ( ( 2 [,) +∞ ) ∩ ( 0 [,] 𝑁 ) ) = ∅ ) |
| 82 |
|
ssdisj |
⊢ ( ( ℙ ⊆ ( 2 [,) +∞ ) ∧ ( ( 2 [,) +∞ ) ∩ ( 0 [,] 𝑁 ) ) = ∅ ) → ( ℙ ∩ ( 0 [,] 𝑁 ) ) = ∅ ) |
| 83 |
58 81 82
|
sylancr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → ( ℙ ∩ ( 0 [,] 𝑁 ) ) = ∅ ) |
| 84 |
51 83
|
eqtrid |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ∅ ) |
| 85 |
|
1zzd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → 1 ∈ ℤ ) |
| 86 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → 𝑁 ∈ ℤ ) |
| 87 |
|
fzn |
⊢ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 < 1 ↔ ( 1 ... 𝑁 ) = ∅ ) ) |
| 88 |
87
|
biimpa |
⊢ ( ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 < 1 ) → ( 1 ... 𝑁 ) = ∅ ) |
| 89 |
85 86 70 88
|
syl21anc |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → ( 1 ... 𝑁 ) = ∅ ) |
| 90 |
89
|
ineq1d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → ( ( 1 ... 𝑁 ) ∩ ℙ ) = ( ∅ ∩ ℙ ) ) |
| 91 |
90 20
|
eqtrdi |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → ( ( 1 ... 𝑁 ) ∩ ℙ ) = ∅ ) |
| 92 |
84 91
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 1 ) → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ( 1 ... 𝑁 ) ∩ ℙ ) ) |
| 93 |
50 92
|
syldan |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ ) → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ( 1 ... 𝑁 ) ∩ ℙ ) ) |
| 94 |
|
exmidd |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∈ ℕ ∨ ¬ 𝑁 ∈ ℕ ) ) |
| 95 |
48 93 94
|
mpjaodan |
⊢ ( 𝑁 ∈ ℤ → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ( 1 ... 𝑁 ) ∩ ℙ ) ) |
| 96 |
95
|
sumeq1d |
⊢ ( 𝑁 ∈ ℤ → Σ 𝑛 ∈ ( ( 0 [,] 𝑁 ) ∩ ℙ ) ( log ‘ 𝑛 ) = Σ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑛 ) ) |
| 97 |
3 96
|
eqtrd |
⊢ ( 𝑁 ∈ ℤ → ( θ ‘ 𝑁 ) = Σ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑛 ) ) |