Step |
Hyp |
Ref |
Expression |
1 |
|
breprexp.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
breprexp.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
3 |
|
breprexplema.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
4 |
|
breprexplema.1 |
⊢ ( 𝜑 → 𝑀 ≤ ( ( 𝑆 + 1 ) · 𝑁 ) ) |
5 |
|
breprexplema.l |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) ∈ ℂ ) |
6 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ⊆ ℕ ) |
8 |
3
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
9 |
|
eqid |
⊢ ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) = ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) |
10 |
7 8 2 9
|
reprsuc |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ( repr ‘ ( 𝑆 + 1 ) ) 𝑀 ) = ∪ 𝑏 ∈ ( 1 ... 𝑁 ) ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) |
11 |
10
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑑 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ ( 𝑆 + 1 ) ) 𝑀 ) ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) = Σ 𝑑 ∈ ∪ 𝑏 ∈ ( 1 ... 𝑁 ) ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) ) |
12 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
13 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → ( 1 ... 𝑁 ) ⊆ ℕ ) |
14 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → 𝑀 ∈ ℤ ) |
15 |
|
fzssz |
⊢ ( 1 ... 𝑁 ) ⊆ ℤ |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → 𝑏 ∈ ( 1 ... 𝑁 ) ) |
17 |
15 16
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → 𝑏 ∈ ℤ ) |
18 |
14 17
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → ( 𝑀 − 𝑏 ) ∈ ℤ ) |
19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → 𝑆 ∈ ℕ0 ) |
20 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
21 |
13 18 19 20
|
reprfi |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ∈ Fin ) |
22 |
|
mptfi |
⊢ ( ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ∈ Fin → ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ∈ Fin ) |
23 |
21 22
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ∈ Fin ) |
24 |
|
rnfi |
⊢ ( ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ∈ Fin → ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ∈ Fin ) |
25 |
23 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ∈ Fin ) |
26 |
13 18 19
|
reprval |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) = { 𝑐 ∈ ( ( 1 ... 𝑁 ) ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = ( 𝑀 − 𝑏 ) } ) |
27 |
|
ssrab2 |
⊢ { 𝑐 ∈ ( ( 1 ... 𝑁 ) ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = ( 𝑀 − 𝑏 ) } ⊆ ( ( 1 ... 𝑁 ) ↑m ( 0 ..^ 𝑆 ) ) |
28 |
26 27
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ⊆ ( ( 1 ... 𝑁 ) ↑m ( 0 ..^ 𝑆 ) ) ) |
29 |
12
|
elexd |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ V ) |
30 |
|
fzonel |
⊢ ¬ 𝑆 ∈ ( 0 ..^ 𝑆 ) |
31 |
30
|
a1i |
⊢ ( 𝜑 → ¬ 𝑆 ∈ ( 0 ..^ 𝑆 ) ) |
32 |
28 29 2 31 9
|
actfunsnrndisj |
⊢ ( 𝜑 → Disj 𝑏 ∈ ( 1 ... 𝑁 ) ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) |
33 |
|
fzofi |
⊢ ( 0 ..^ ( 𝑆 + 1 ) ) ∈ Fin |
34 |
33
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) → ( 0 ..^ ( 𝑆 + 1 ) ) ∈ Fin ) |
35 |
5
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) → ∀ 𝑦 ∈ ℕ ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) ∈ ℂ ) |
36 |
35
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ∀ 𝑦 ∈ ℕ ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) ∈ ℂ ) |
37 |
36
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) → ∀ 𝑥 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ∀ 𝑦 ∈ ℕ ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) ∈ ℂ ) |
38 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) → 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) |
39 |
|
nfv |
⊢ Ⅎ 𝑣 ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) |
40 |
|
nfcv |
⊢ Ⅎ 𝑣 𝑑 |
41 |
|
nfmpt1 |
⊢ Ⅎ 𝑣 ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) |
42 |
41
|
nfrn |
⊢ Ⅎ 𝑣 ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) |
43 |
40 42
|
nfel |
⊢ Ⅎ 𝑣 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) |
44 |
39 43
|
nfan |
⊢ Ⅎ 𝑣 ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) |
45 |
6
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) → ( 1 ... 𝑁 ) ⊆ ℕ ) |
46 |
18
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) → ( 𝑀 − 𝑏 ) ∈ ℤ ) |
47 |
19
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) → 𝑆 ∈ ℕ0 ) |
48 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) → 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) |
49 |
45 46 47 48
|
reprf |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) → 𝑣 : ( 0 ..^ 𝑆 ) ⟶ ( 1 ... 𝑁 ) ) |
50 |
16
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) → 𝑏 ∈ ( 1 ... 𝑁 ) ) |
51 |
47 50
|
fsnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) → { 〈 𝑆 , 𝑏 〉 } : { 𝑆 } ⟶ ( 1 ... 𝑁 ) ) |
52 |
|
fzodisjsn |
⊢ ( ( 0 ..^ 𝑆 ) ∩ { 𝑆 } ) = ∅ |
53 |
52
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) → ( ( 0 ..^ 𝑆 ) ∩ { 𝑆 } ) = ∅ ) |
54 |
|
fun2 |
⊢ ( ( ( 𝑣 : ( 0 ..^ 𝑆 ) ⟶ ( 1 ... 𝑁 ) ∧ { 〈 𝑆 , 𝑏 〉 } : { 𝑆 } ⟶ ( 1 ... 𝑁 ) ) ∧ ( ( 0 ..^ 𝑆 ) ∩ { 𝑆 } ) = ∅ ) → ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) : ( ( 0 ..^ 𝑆 ) ∪ { 𝑆 } ) ⟶ ( 1 ... 𝑁 ) ) |
55 |
49 51 53 54
|
syl21anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) → ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) : ( ( 0 ..^ 𝑆 ) ∪ { 𝑆 } ) ⟶ ( 1 ... 𝑁 ) ) |
56 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) → 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) |
57 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
58 |
2 57
|
eleqtrdi |
⊢ ( 𝜑 → 𝑆 ∈ ( ℤ≥ ‘ 0 ) ) |
59 |
|
fzosplitsn |
⊢ ( 𝑆 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ..^ ( 𝑆 + 1 ) ) = ( ( 0 ..^ 𝑆 ) ∪ { 𝑆 } ) ) |
60 |
58 59
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( 𝑆 + 1 ) ) = ( ( 0 ..^ 𝑆 ) ∪ { 𝑆 } ) ) |
61 |
60
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) → ( 0 ..^ ( 𝑆 + 1 ) ) = ( ( 0 ..^ 𝑆 ) ∪ { 𝑆 } ) ) |
62 |
56 61
|
feq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) → ( 𝑑 : ( 0 ..^ ( 𝑆 + 1 ) ) ⟶ ( 1 ... 𝑁 ) ↔ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) : ( ( 0 ..^ 𝑆 ) ∪ { 𝑆 } ) ⟶ ( 1 ... 𝑁 ) ) ) |
63 |
55 62
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) → 𝑑 : ( 0 ..^ ( 𝑆 + 1 ) ) ⟶ ( 1 ... 𝑁 ) ) |
64 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) → 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) |
65 |
|
vex |
⊢ 𝑣 ∈ V |
66 |
|
snex |
⊢ { 〈 𝑆 , 𝑏 〉 } ∈ V |
67 |
65 66
|
unex |
⊢ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ∈ V |
68 |
9 67
|
elrnmpti |
⊢ ( 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ↔ ∃ 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) |
69 |
64 68
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) → ∃ 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) 𝑑 = ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) |
70 |
44 63 69
|
r19.29af |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) → 𝑑 : ( 0 ..^ ( 𝑆 + 1 ) ) ⟶ ( 1 ... 𝑁 ) ) |
71 |
70
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) → 𝑑 : ( 0 ..^ ( 𝑆 + 1 ) ) ⟶ ( 1 ... 𝑁 ) ) |
72 |
71 38
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) → ( 𝑑 ‘ 𝑎 ) ∈ ( 1 ... 𝑁 ) ) |
73 |
6 72
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) → ( 𝑑 ‘ 𝑎 ) ∈ ℕ ) |
74 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ 𝑎 ) ) |
75 |
74
|
fveq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) = ( ( 𝐿 ‘ 𝑎 ) ‘ 𝑦 ) ) |
76 |
75
|
eleq1d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) ∈ ℂ ↔ ( ( 𝐿 ‘ 𝑎 ) ‘ 𝑦 ) ∈ ℂ ) ) |
77 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑑 ‘ 𝑎 ) → ( ( 𝐿 ‘ 𝑎 ) ‘ 𝑦 ) = ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) ) |
78 |
77
|
eleq1d |
⊢ ( 𝑦 = ( 𝑑 ‘ 𝑎 ) → ( ( ( 𝐿 ‘ 𝑎 ) ‘ 𝑦 ) ∈ ℂ ↔ ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) ∈ ℂ ) ) |
79 |
76 78
|
rspc2v |
⊢ ( ( 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ∧ ( 𝑑 ‘ 𝑎 ) ∈ ℕ ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ∀ 𝑦 ∈ ℕ ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) ∈ ℂ → ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) ∈ ℂ ) ) |
80 |
38 73 79
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ∀ 𝑦 ∈ ℕ ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) ∈ ℂ → ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) ∈ ℂ ) ) |
81 |
37 80
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ∧ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) → ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) ∈ ℂ ) |
82 |
34 81
|
fprodcl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) → ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) ∈ ℂ ) |
83 |
82
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ ( 1 ... 𝑁 ) ∧ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) ) → ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) ∈ ℂ ) |
84 |
12 25 32 83
|
fsumiun |
⊢ ( 𝜑 → Σ 𝑑 ∈ ∪ 𝑏 ∈ ( 1 ... 𝑁 ) ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) = Σ 𝑏 ∈ ( 1 ... 𝑁 ) Σ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) ) |
85 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( 0 ..^ ( 𝑆 + 1 ) ) = ( ( 0 ..^ 𝑆 ) ∪ { 𝑆 } ) ) |
86 |
85
|
prodeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) ) = ∏ 𝑎 ∈ ( ( 0 ..^ 𝑆 ) ∪ { 𝑆 } ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) ) ) |
87 |
|
nfv |
⊢ Ⅎ 𝑎 ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) |
88 |
|
nfcv |
⊢ Ⅎ 𝑎 ( ( 𝐿 ‘ 𝑆 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑆 ) ) |
89 |
|
fzofi |
⊢ ( 0 ..^ 𝑆 ) ∈ Fin |
90 |
89
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( 0 ..^ 𝑆 ) ∈ Fin ) |
91 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → 𝑆 ∈ ℕ0 ) |
92 |
30
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ¬ 𝑆 ∈ ( 0 ..^ 𝑆 ) ) |
93 |
6
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( 1 ... 𝑁 ) ⊆ ℕ ) |
94 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( 𝑀 − 𝑏 ) ∈ ℤ ) |
95 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) |
96 |
93 94 91 95
|
reprf |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → 𝑒 : ( 0 ..^ 𝑆 ) ⟶ ( 1 ... 𝑁 ) ) |
97 |
96
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → 𝑒 Fn ( 0 ..^ 𝑆 ) ) |
98 |
97
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑒 Fn ( 0 ..^ 𝑆 ) ) |
99 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → 𝑏 ∈ ( 1 ... 𝑁 ) ) |
100 |
|
fnsng |
⊢ ( ( 𝑆 ∈ ℕ0 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → { 〈 𝑆 , 𝑏 〉 } Fn { 𝑆 } ) |
101 |
91 99 100
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → { 〈 𝑆 , 𝑏 〉 } Fn { 𝑆 } ) |
102 |
101
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → { 〈 𝑆 , 𝑏 〉 } Fn { 𝑆 } ) |
103 |
52
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 0 ..^ 𝑆 ) ∩ { 𝑆 } ) = ∅ ) |
104 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ ( 0 ..^ 𝑆 ) ) |
105 |
|
fvun1 |
⊢ ( ( 𝑒 Fn ( 0 ..^ 𝑆 ) ∧ { 〈 𝑆 , 𝑏 〉 } Fn { 𝑆 } ∧ ( ( ( 0 ..^ 𝑆 ) ∩ { 𝑆 } ) = ∅ ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) ) → ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) = ( 𝑒 ‘ 𝑎 ) ) |
106 |
98 102 103 104 105
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) = ( 𝑒 ‘ 𝑎 ) ) |
107 |
106
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝐿 ‘ 𝑎 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) ) = ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑒 ‘ 𝑎 ) ) ) |
108 |
36
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ∀ 𝑥 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ∀ 𝑦 ∈ ℕ ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) ∈ ℂ ) |
109 |
108
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ∀ 𝑥 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ∀ 𝑦 ∈ ℕ ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) ∈ ℂ ) |
110 |
|
fzossfzop1 |
⊢ ( 𝑆 ∈ ℕ0 → ( 0 ..^ 𝑆 ) ⊆ ( 0 ..^ ( 𝑆 + 1 ) ) ) |
111 |
2 110
|
syl |
⊢ ( 𝜑 → ( 0 ..^ 𝑆 ) ⊆ ( 0 ..^ ( 𝑆 + 1 ) ) ) |
112 |
111
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( 0 ..^ 𝑆 ) ⊆ ( 0 ..^ ( 𝑆 + 1 ) ) ) |
113 |
112
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) |
114 |
96
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑒 ‘ 𝑎 ) ∈ ( 1 ... 𝑁 ) ) |
115 |
6 114
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑒 ‘ 𝑎 ) ∈ ℕ ) |
116 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑒 ‘ 𝑎 ) → ( ( 𝐿 ‘ 𝑎 ) ‘ 𝑦 ) = ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑒 ‘ 𝑎 ) ) ) |
117 |
116
|
eleq1d |
⊢ ( 𝑦 = ( 𝑒 ‘ 𝑎 ) → ( ( ( 𝐿 ‘ 𝑎 ) ‘ 𝑦 ) ∈ ℂ ↔ ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑒 ‘ 𝑎 ) ) ∈ ℂ ) ) |
118 |
76 117
|
rspc2v |
⊢ ( ( 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ∧ ( 𝑒 ‘ 𝑎 ) ∈ ℕ ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ∀ 𝑦 ∈ ℕ ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) ∈ ℂ → ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑒 ‘ 𝑎 ) ) ∈ ℂ ) ) |
119 |
113 115 118
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ∀ 𝑦 ∈ ℕ ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) ∈ ℂ → ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑒 ‘ 𝑎 ) ) ∈ ℂ ) ) |
120 |
109 119
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑒 ‘ 𝑎 ) ) ∈ ℂ ) |
121 |
107 120
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝐿 ‘ 𝑎 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) ) ∈ ℂ ) |
122 |
|
fveq2 |
⊢ ( 𝑎 = 𝑆 → ( 𝐿 ‘ 𝑎 ) = ( 𝐿 ‘ 𝑆 ) ) |
123 |
|
fveq2 |
⊢ ( 𝑎 = 𝑆 → ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) = ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑆 ) ) |
124 |
122 123
|
fveq12d |
⊢ ( 𝑎 = 𝑆 → ( ( 𝐿 ‘ 𝑎 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) ) = ( ( 𝐿 ‘ 𝑆 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑆 ) ) ) |
125 |
52
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( ( 0 ..^ 𝑆 ) ∩ { 𝑆 } ) = ∅ ) |
126 |
|
snidg |
⊢ ( 𝑆 ∈ ℕ0 → 𝑆 ∈ { 𝑆 } ) |
127 |
91 126
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → 𝑆 ∈ { 𝑆 } ) |
128 |
|
fvun2 |
⊢ ( ( 𝑒 Fn ( 0 ..^ 𝑆 ) ∧ { 〈 𝑆 , 𝑏 〉 } Fn { 𝑆 } ∧ ( ( ( 0 ..^ 𝑆 ) ∩ { 𝑆 } ) = ∅ ∧ 𝑆 ∈ { 𝑆 } ) ) → ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑆 ) = ( { 〈 𝑆 , 𝑏 〉 } ‘ 𝑆 ) ) |
129 |
97 101 125 127 128
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑆 ) = ( { 〈 𝑆 , 𝑏 〉 } ‘ 𝑆 ) ) |
130 |
|
fvsng |
⊢ ( ( 𝑆 ∈ ℕ0 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → ( { 〈 𝑆 , 𝑏 〉 } ‘ 𝑆 ) = 𝑏 ) |
131 |
91 99 130
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( { 〈 𝑆 , 𝑏 〉 } ‘ 𝑆 ) = 𝑏 ) |
132 |
129 131
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑆 ) = 𝑏 ) |
133 |
132
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( ( 𝐿 ‘ 𝑆 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑆 ) ) = ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ) |
134 |
|
fzonn0p1 |
⊢ ( 𝑆 ∈ ℕ0 → 𝑆 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) |
135 |
2 134
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) |
136 |
135
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → 𝑆 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) |
137 |
6 99
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → 𝑏 ∈ ℕ ) |
138 |
|
fveq2 |
⊢ ( 𝑥 = 𝑆 → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ 𝑆 ) ) |
139 |
138
|
fveq1d |
⊢ ( 𝑥 = 𝑆 → ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) = ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑦 ) ) |
140 |
139
|
eleq1d |
⊢ ( 𝑥 = 𝑆 → ( ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) ∈ ℂ ↔ ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑦 ) ∈ ℂ ) ) |
141 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑦 ) = ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ) |
142 |
141
|
eleq1d |
⊢ ( 𝑦 = 𝑏 → ( ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑦 ) ∈ ℂ ↔ ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ∈ ℂ ) ) |
143 |
140 142
|
rspc2v |
⊢ ( ( 𝑆 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ∧ 𝑏 ∈ ℕ ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ∀ 𝑦 ∈ ℕ ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) ∈ ℂ → ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ∈ ℂ ) ) |
144 |
136 137 143
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ∀ 𝑦 ∈ ℕ ( ( 𝐿 ‘ 𝑥 ) ‘ 𝑦 ) ∈ ℂ → ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ∈ ℂ ) ) |
145 |
108 144
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ∈ ℂ ) |
146 |
133 145
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( ( 𝐿 ‘ 𝑆 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑆 ) ) ∈ ℂ ) |
147 |
87 88 90 91 92 121 124 146
|
fprodsplitsn |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ∏ 𝑎 ∈ ( ( 0 ..^ 𝑆 ) ∪ { 𝑆 } ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) ) = ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) ) · ( ( 𝐿 ‘ 𝑆 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑆 ) ) ) ) |
148 |
107
|
prodeq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) ) = ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑒 ‘ 𝑎 ) ) ) |
149 |
148 133
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) ) · ( ( 𝐿 ‘ 𝑆 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑆 ) ) ) = ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑒 ‘ 𝑎 ) ) · ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ) ) |
150 |
86 147 149
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) ) = ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑒 ‘ 𝑎 ) ) · ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ) ) |
151 |
150
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → Σ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) ) = Σ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑒 ‘ 𝑎 ) ) · ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ) ) |
152 |
|
simpl |
⊢ ( ( 𝑑 = ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ∧ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) → 𝑑 = ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) |
153 |
152
|
fveq1d |
⊢ ( ( 𝑑 = ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ∧ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) → ( 𝑑 ‘ 𝑎 ) = ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) ) |
154 |
153
|
fveq2d |
⊢ ( ( 𝑑 = ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ∧ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ) → ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) = ( ( 𝐿 ‘ 𝑎 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) ) ) |
155 |
154
|
prodeq2dv |
⊢ ( 𝑑 = ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) → ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) = ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) ) ) |
156 |
28 29 2 31 9
|
actfunsnf1o |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) : ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) –1-1-onto→ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) |
157 |
9
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) = ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ) |
158 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑣 = 𝑒 ) → 𝑣 = 𝑒 ) |
159 |
158
|
uneq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) ∧ 𝑣 = 𝑒 ) → ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) = ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) |
160 |
|
vex |
⊢ 𝑒 ∈ V |
161 |
160 66
|
unex |
⊢ ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ∈ V |
162 |
161
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ∈ V ) |
163 |
157 159 95 162
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ) → ( ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ‘ 𝑒 ) = ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) |
164 |
155 21 156 163 82
|
fsumf1o |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → Σ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) = Σ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( ( 𝑒 ∪ { 〈 𝑆 , 𝑏 〉 } ) ‘ 𝑎 ) ) ) |
165 |
|
simpl |
⊢ ( ( 𝑑 = 𝑒 ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑑 = 𝑒 ) |
166 |
165
|
fveq1d |
⊢ ( ( 𝑑 = 𝑒 ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑑 ‘ 𝑎 ) = ( 𝑒 ‘ 𝑎 ) ) |
167 |
166
|
fveq2d |
⊢ ( ( 𝑑 = 𝑒 ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) = ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑒 ‘ 𝑎 ) ) ) |
168 |
167
|
prodeq2dv |
⊢ ( 𝑑 = 𝑒 → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) = ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑒 ‘ 𝑎 ) ) ) |
169 |
168
|
oveq1d |
⊢ ( 𝑑 = 𝑒 → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) · ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ) = ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑒 ‘ 𝑎 ) ) · ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ) ) |
170 |
169
|
cbvsumv |
⊢ Σ 𝑑 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) · ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ) = Σ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑒 ‘ 𝑎 ) ) · ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ) |
171 |
170
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → Σ 𝑑 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) · ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ) = Σ 𝑒 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑒 ‘ 𝑎 ) ) · ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ) ) |
172 |
151 164 171
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑁 ) ) → Σ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) = Σ 𝑑 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) · ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ) ) |
173 |
172
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑏 ∈ ( 1 ... 𝑁 ) Σ 𝑑 ∈ ran ( 𝑣 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ↦ ( 𝑣 ∪ { 〈 𝑆 , 𝑏 〉 } ) ) ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) = Σ 𝑏 ∈ ( 1 ... 𝑁 ) Σ 𝑑 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) · ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ) ) |
174 |
11 84 173
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑑 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ ( 𝑆 + 1 ) ) 𝑀 ) ∏ 𝑎 ∈ ( 0 ..^ ( 𝑆 + 1 ) ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) = Σ 𝑏 ∈ ( 1 ... 𝑁 ) Σ 𝑑 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) ( 𝑀 − 𝑏 ) ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑑 ‘ 𝑎 ) ) · ( ( 𝐿 ‘ 𝑆 ) ‘ 𝑏 ) ) ) |