| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reprval.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) |
| 2 |
|
reprval.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
reprval.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
| 4 |
|
reprf.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) |
| 5 |
1 2 3
|
reprval |
⊢ ( 𝜑 → ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) = { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
| 6 |
4 5
|
eleqtrd |
⊢ ( 𝜑 → 𝐶 ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
| 7 |
|
elrabi |
⊢ ( 𝐶 ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } → 𝐶 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 8 |
|
elmapi |
⊢ ( 𝐶 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) → 𝐶 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) |
| 9 |
6 7 8
|
3syl |
⊢ ( 𝜑 → 𝐶 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) |