Metamath Proof Explorer


Theorem reprf

Description: Members of the representation of M as the sum of S nonnegative integers from set A as functions. (Contributed by Thierry Arnoux, 5-Dec-2021)

Ref Expression
Hypotheses reprval.a φA
reprval.m φM
reprval.s φS0
reprf.c φCAreprSM
Assertion reprf φC:0..^SA

Proof

Step Hyp Ref Expression
1 reprval.a φA
2 reprval.m φM
3 reprval.s φS0
4 reprf.c φCAreprSM
5 1 2 3 reprval φAreprSM=cA0..^S|a0..^Sca=M
6 4 5 eleqtrd φCcA0..^S|a0..^Sca=M
7 elrabi CcA0..^S|a0..^Sca=MCA0..^S
8 elmapi CA0..^SC:0..^SA
9 6 7 8 3syl φC:0..^SA