Metamath Proof Explorer


Theorem reprsum

Description: Sums of values of the members of the representation of M equal M . (Contributed by Thierry Arnoux, 5-Dec-2021)

Ref Expression
Hypotheses reprval.a φA
reprval.m φM
reprval.s φS0
reprf.c φCAreprSM
Assertion reprsum φa0..^SCa=M

Proof

Step Hyp Ref Expression
1 reprval.a φA
2 reprval.m φM
3 reprval.s φS0
4 reprf.c φCAreprSM
5 1 2 3 reprval φAreprSM=cA0..^S|a0..^Sca=M
6 4 5 eleqtrd φCcA0..^S|a0..^Sca=M
7 fveq1 c=Cca=Ca
8 7 sumeq2sdv c=Ca0..^Sca=a0..^SCa
9 8 eqeq1d c=Ca0..^Sca=Ma0..^SCa=M
10 9 elrab CcA0..^S|a0..^Sca=MCA0..^Sa0..^SCa=M
11 6 10 sylib φCA0..^Sa0..^SCa=M
12 11 simprd φa0..^SCa=M