| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reprval.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) |
| 2 |
|
reprval.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
reprval.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
| 4 |
|
reprf.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) |
| 5 |
1 2 3
|
reprval |
⊢ ( 𝜑 → ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) = { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
| 6 |
4 5
|
eleqtrd |
⊢ ( 𝜑 → 𝐶 ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
| 7 |
|
fveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 ‘ 𝑎 ) = ( 𝐶 ‘ 𝑎 ) ) |
| 8 |
7
|
sumeq2sdv |
⊢ ( 𝑐 = 𝐶 → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝐶 ‘ 𝑎 ) ) |
| 9 |
8
|
eqeq1d |
⊢ ( 𝑐 = 𝐶 → ( Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ↔ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝐶 ‘ 𝑎 ) = 𝑀 ) ) |
| 10 |
9
|
elrab |
⊢ ( 𝐶 ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ↔ ( 𝐶 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝐶 ‘ 𝑎 ) = 𝑀 ) ) |
| 11 |
6 10
|
sylib |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝐶 ‘ 𝑎 ) = 𝑀 ) ) |
| 12 |
11
|
simprd |
⊢ ( 𝜑 → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝐶 ‘ 𝑎 ) = 𝑀 ) |