Step |
Hyp |
Ref |
Expression |
1 |
|
reprval.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) |
2 |
|
reprval.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
reprval.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
4 |
|
reprf.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) |
5 |
|
reprle.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ 𝑆 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑎 = 𝑋 → ( 𝐶 ‘ 𝑎 ) = ( 𝐶 ‘ 𝑋 ) ) |
7 |
|
fzofi |
⊢ ( 0 ..^ 𝑆 ) ∈ Fin |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 𝑆 ) ∈ Fin ) |
9 |
1 2 3 4
|
reprsum |
⊢ ( 𝜑 → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝐶 ‘ 𝑎 ) = 𝑀 ) |
10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝐴 ⊆ ℕ ) |
11 |
1 2 3 4
|
reprf |
⊢ ( 𝜑 → 𝐶 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) |
12 |
11
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝐶 ‘ 𝑎 ) ∈ 𝐴 ) |
13 |
10 12
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝐶 ‘ 𝑎 ) ∈ ℕ ) |
14 |
13
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝐶 ‘ 𝑎 ) ∈ ℝ+ ) |
15 |
6 8 9 14 5
|
fsumub |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑋 ) ≤ 𝑀 ) |