| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reprval.a |
|- ( ph -> A C_ NN ) |
| 2 |
|
reprval.m |
|- ( ph -> M e. ZZ ) |
| 3 |
|
reprval.s |
|- ( ph -> S e. NN0 ) |
| 4 |
|
reprf.c |
|- ( ph -> C e. ( A ( repr ` S ) M ) ) |
| 5 |
1 2 3
|
reprval |
|- ( ph -> ( A ( repr ` S ) M ) = { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) |
| 6 |
4 5
|
eleqtrd |
|- ( ph -> C e. { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) |
| 7 |
|
elrabi |
|- ( C e. { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } -> C e. ( A ^m ( 0 ..^ S ) ) ) |
| 8 |
|
elmapi |
|- ( C e. ( A ^m ( 0 ..^ S ) ) -> C : ( 0 ..^ S ) --> A ) |
| 9 |
6 7 8
|
3syl |
|- ( ph -> C : ( 0 ..^ S ) --> A ) |