| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reprval.a |
|- ( ph -> A C_ NN ) |
| 2 |
|
reprval.m |
|- ( ph -> M e. ZZ ) |
| 3 |
|
reprval.s |
|- ( ph -> S e. NN0 ) |
| 4 |
|
df-repr |
|- repr = ( s e. NN0 |-> ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m } ) ) |
| 5 |
|
oveq2 |
|- ( s = S -> ( 0 ..^ s ) = ( 0 ..^ S ) ) |
| 6 |
5
|
oveq2d |
|- ( s = S -> ( b ^m ( 0 ..^ s ) ) = ( b ^m ( 0 ..^ S ) ) ) |
| 7 |
5
|
sumeq1d |
|- ( s = S -> sum_ a e. ( 0 ..^ s ) ( c ` a ) = sum_ a e. ( 0 ..^ S ) ( c ` a ) ) |
| 8 |
7
|
eqeq1d |
|- ( s = S -> ( sum_ a e. ( 0 ..^ s ) ( c ` a ) = m <-> sum_ a e. ( 0 ..^ S ) ( c ` a ) = m ) ) |
| 9 |
6 8
|
rabeqbidv |
|- ( s = S -> { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m } = { c e. ( b ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = m } ) |
| 10 |
9
|
mpoeq3dv |
|- ( s = S -> ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m } ) = ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = m } ) ) |
| 11 |
|
nnex |
|- NN e. _V |
| 12 |
11
|
pwex |
|- ~P NN e. _V |
| 13 |
|
zex |
|- ZZ e. _V |
| 14 |
12 13
|
mpoex |
|- ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = m } ) e. _V |
| 15 |
14
|
a1i |
|- ( ph -> ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = m } ) e. _V ) |
| 16 |
4 10 3 15
|
fvmptd3 |
|- ( ph -> ( repr ` S ) = ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = m } ) ) |
| 17 |
|
simprl |
|- ( ( ph /\ ( b = A /\ m = M ) ) -> b = A ) |
| 18 |
17
|
oveq1d |
|- ( ( ph /\ ( b = A /\ m = M ) ) -> ( b ^m ( 0 ..^ S ) ) = ( A ^m ( 0 ..^ S ) ) ) |
| 19 |
|
simprr |
|- ( ( ph /\ ( b = A /\ m = M ) ) -> m = M ) |
| 20 |
19
|
eqeq2d |
|- ( ( ph /\ ( b = A /\ m = M ) ) -> ( sum_ a e. ( 0 ..^ S ) ( c ` a ) = m <-> sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) ) |
| 21 |
18 20
|
rabeqbidv |
|- ( ( ph /\ ( b = A /\ m = M ) ) -> { c e. ( b ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = m } = { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) |
| 22 |
11
|
a1i |
|- ( ph -> NN e. _V ) |
| 23 |
22 1
|
ssexd |
|- ( ph -> A e. _V ) |
| 24 |
23 1
|
elpwd |
|- ( ph -> A e. ~P NN ) |
| 25 |
|
ovex |
|- ( A ^m ( 0 ..^ S ) ) e. _V |
| 26 |
25
|
rabex |
|- { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } e. _V |
| 27 |
26
|
a1i |
|- ( ph -> { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } e. _V ) |
| 28 |
16 21 24 2 27
|
ovmpod |
|- ( ph -> ( A ( repr ` S ) M ) = { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) |