| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crepr |
|- repr |
| 1 |
|
vs |
|- s |
| 2 |
|
cn0 |
|- NN0 |
| 3 |
|
vb |
|- b |
| 4 |
|
cn |
|- NN |
| 5 |
4
|
cpw |
|- ~P NN |
| 6 |
|
vm |
|- m |
| 7 |
|
cz |
|- ZZ |
| 8 |
|
vc |
|- c |
| 9 |
3
|
cv |
|- b |
| 10 |
|
cmap |
|- ^m |
| 11 |
|
cc0 |
|- 0 |
| 12 |
|
cfzo |
|- ..^ |
| 13 |
1
|
cv |
|- s |
| 14 |
11 13 12
|
co |
|- ( 0 ..^ s ) |
| 15 |
9 14 10
|
co |
|- ( b ^m ( 0 ..^ s ) ) |
| 16 |
|
va |
|- a |
| 17 |
8
|
cv |
|- c |
| 18 |
16
|
cv |
|- a |
| 19 |
18 17
|
cfv |
|- ( c ` a ) |
| 20 |
14 19 16
|
csu |
|- sum_ a e. ( 0 ..^ s ) ( c ` a ) |
| 21 |
6
|
cv |
|- m |
| 22 |
20 21
|
wceq |
|- sum_ a e. ( 0 ..^ s ) ( c ` a ) = m |
| 23 |
22 8 15
|
crab |
|- { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m } |
| 24 |
3 6 5 7 23
|
cmpo |
|- ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m } ) |
| 25 |
1 2 24
|
cmpt |
|- ( s e. NN0 |-> ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m } ) ) |
| 26 |
0 25
|
wceq |
|- repr = ( s e. NN0 |-> ( b e. ~P NN , m e. ZZ |-> { c e. ( b ^m ( 0 ..^ s ) ) | sum_ a e. ( 0 ..^ s ) ( c ` a ) = m } ) ) |