| Step | Hyp | Ref | Expression | 
						
							| 1 |  | actfunsn.1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  →  𝐴  ⊆  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 2 |  | actfunsn.2 | ⊢ ( 𝜑  →  𝐶  ∈  V ) | 
						
							| 3 |  | actfunsn.3 | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 4 |  | actfunsn.4 | ⊢ ( 𝜑  →  ¬  𝐼  ∈  𝐵 ) | 
						
							| 5 |  | actfunsn.5 | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  ( 𝑥  ∪  { 〈 𝐼 ,  𝑘 〉 } ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  ∧  𝑓  =  ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } ) )  →  𝑓  =  ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } ) ) | 
						
							| 7 | 6 | fveq1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  ∧  𝑓  =  ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } ) )  →  ( 𝑓 ‘ 𝐼 )  =  ( ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } ) ‘ 𝐼 ) ) | 
						
							| 8 | 1 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  →  𝐴  ⊆  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) | 
						
							| 10 | 8 9 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  →  𝑧  ∈  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 11 |  | elmapfn | ⊢ ( 𝑧  ∈  ( 𝐶  ↑m  𝐵 )  →  𝑧  Fn  𝐵 ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  →  𝑧  Fn  𝐵 ) | 
						
							| 13 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  →  𝐼  ∈  𝑉 ) | 
						
							| 14 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  →  𝑘  ∈  𝐶 ) | 
						
							| 15 |  | fnsng | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑘  ∈  𝐶 )  →  { 〈 𝐼 ,  𝑘 〉 }  Fn  { 𝐼 } ) | 
						
							| 16 | 13 14 15 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  →  { 〈 𝐼 ,  𝑘 〉 }  Fn  { 𝐼 } ) | 
						
							| 17 |  | disjsn | ⊢ ( ( 𝐵  ∩  { 𝐼 } )  =  ∅  ↔  ¬  𝐼  ∈  𝐵 ) | 
						
							| 18 | 4 17 | sylibr | ⊢ ( 𝜑  →  ( 𝐵  ∩  { 𝐼 } )  =  ∅ ) | 
						
							| 19 | 18 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  →  ( 𝐵  ∩  { 𝐼 } )  =  ∅ ) | 
						
							| 20 |  | snidg | ⊢ ( 𝐼  ∈  𝑉  →  𝐼  ∈  { 𝐼 } ) | 
						
							| 21 | 13 20 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  →  𝐼  ∈  { 𝐼 } ) | 
						
							| 22 |  | fvun2 | ⊢ ( ( 𝑧  Fn  𝐵  ∧  { 〈 𝐼 ,  𝑘 〉 }  Fn  { 𝐼 }  ∧  ( ( 𝐵  ∩  { 𝐼 } )  =  ∅  ∧  𝐼  ∈  { 𝐼 } ) )  →  ( ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } ) ‘ 𝐼 )  =  ( { 〈 𝐼 ,  𝑘 〉 } ‘ 𝐼 ) ) | 
						
							| 23 | 12 16 19 21 22 | syl112anc | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } ) ‘ 𝐼 )  =  ( { 〈 𝐼 ,  𝑘 〉 } ‘ 𝐼 ) ) | 
						
							| 24 |  | fvsng | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑘  ∈  𝐶 )  →  ( { 〈 𝐼 ,  𝑘 〉 } ‘ 𝐼 )  =  𝑘 ) | 
						
							| 25 | 13 14 24 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  →  ( { 〈 𝐼 ,  𝑘 〉 } ‘ 𝐼 )  =  𝑘 ) | 
						
							| 26 | 23 25 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } ) ‘ 𝐼 )  =  𝑘 ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  ∧  𝑓  =  ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } ) )  →  ( ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } ) ‘ 𝐼 )  =  𝑘 ) | 
						
							| 28 | 7 27 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  ∧  𝑧  ∈  𝐴 )  ∧  𝑓  =  ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } ) )  →  ( 𝑓 ‘ 𝐼 )  =  𝑘 ) | 
						
							| 29 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  →  𝑓  ∈  ran  𝐹 ) | 
						
							| 30 |  | uneq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∪  { 〈 𝐼 ,  𝑘 〉 } )  =  ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } ) ) | 
						
							| 31 | 30 | cbvmptv | ⊢ ( 𝑥  ∈  𝐴  ↦  ( 𝑥  ∪  { 〈 𝐼 ,  𝑘 〉 } ) )  =  ( 𝑧  ∈  𝐴  ↦  ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } ) ) | 
						
							| 32 | 5 31 | eqtri | ⊢ 𝐹  =  ( 𝑧  ∈  𝐴  ↦  ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } ) ) | 
						
							| 33 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 34 |  | snex | ⊢ { 〈 𝐼 ,  𝑘 〉 }  ∈  V | 
						
							| 35 | 33 34 | unex | ⊢ ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } )  ∈  V | 
						
							| 36 | 32 35 | elrnmpti | ⊢ ( 𝑓  ∈  ran  𝐹  ↔  ∃ 𝑧  ∈  𝐴 𝑓  =  ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } ) ) | 
						
							| 37 | 29 36 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  →  ∃ 𝑧  ∈  𝐴 𝑓  =  ( 𝑧  ∪  { 〈 𝐼 ,  𝑘 〉 } ) ) | 
						
							| 38 | 28 37 | r19.29a | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  ∧  𝑓  ∈  ran  𝐹 )  →  ( 𝑓 ‘ 𝐼 )  =  𝑘 ) | 
						
							| 39 | 38 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  →  ∀ 𝑓  ∈  ran  𝐹 ( 𝑓 ‘ 𝐼 )  =  𝑘 ) | 
						
							| 40 | 39 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐶 ∀ 𝑓  ∈  ran  𝐹 ( 𝑓 ‘ 𝐼 )  =  𝑘 ) | 
						
							| 41 |  | invdisj | ⊢ ( ∀ 𝑘  ∈  𝐶 ∀ 𝑓  ∈  ran  𝐹 ( 𝑓 ‘ 𝐼 )  =  𝑘  →  Disj  𝑘  ∈  𝐶 ran  𝐹 ) | 
						
							| 42 | 40 41 | syl | ⊢ ( 𝜑  →  Disj  𝑘  ∈  𝐶 ran  𝐹 ) |