Step |
Hyp |
Ref |
Expression |
1 |
|
actfunsn.1 |
|- ( ( ph /\ k e. C ) -> A C_ ( C ^m B ) ) |
2 |
|
actfunsn.2 |
|- ( ph -> C e. _V ) |
3 |
|
actfunsn.3 |
|- ( ph -> I e. V ) |
4 |
|
actfunsn.4 |
|- ( ph -> -. I e. B ) |
5 |
|
actfunsn.5 |
|- F = ( x e. A |-> ( x u. { <. I , k >. } ) ) |
6 |
|
simpr |
|- ( ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) /\ f = ( z u. { <. I , k >. } ) ) -> f = ( z u. { <. I , k >. } ) ) |
7 |
6
|
fveq1d |
|- ( ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) /\ f = ( z u. { <. I , k >. } ) ) -> ( f ` I ) = ( ( z u. { <. I , k >. } ) ` I ) ) |
8 |
1
|
ad2antrr |
|- ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> A C_ ( C ^m B ) ) |
9 |
|
simpr |
|- ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> z e. A ) |
10 |
8 9
|
sseldd |
|- ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> z e. ( C ^m B ) ) |
11 |
|
elmapfn |
|- ( z e. ( C ^m B ) -> z Fn B ) |
12 |
10 11
|
syl |
|- ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> z Fn B ) |
13 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> I e. V ) |
14 |
|
simpllr |
|- ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> k e. C ) |
15 |
|
fnsng |
|- ( ( I e. V /\ k e. C ) -> { <. I , k >. } Fn { I } ) |
16 |
13 14 15
|
syl2anc |
|- ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> { <. I , k >. } Fn { I } ) |
17 |
|
disjsn |
|- ( ( B i^i { I } ) = (/) <-> -. I e. B ) |
18 |
4 17
|
sylibr |
|- ( ph -> ( B i^i { I } ) = (/) ) |
19 |
18
|
ad3antrrr |
|- ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> ( B i^i { I } ) = (/) ) |
20 |
|
snidg |
|- ( I e. V -> I e. { I } ) |
21 |
13 20
|
syl |
|- ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> I e. { I } ) |
22 |
|
fvun2 |
|- ( ( z Fn B /\ { <. I , k >. } Fn { I } /\ ( ( B i^i { I } ) = (/) /\ I e. { I } ) ) -> ( ( z u. { <. I , k >. } ) ` I ) = ( { <. I , k >. } ` I ) ) |
23 |
12 16 19 21 22
|
syl112anc |
|- ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> ( ( z u. { <. I , k >. } ) ` I ) = ( { <. I , k >. } ` I ) ) |
24 |
|
fvsng |
|- ( ( I e. V /\ k e. C ) -> ( { <. I , k >. } ` I ) = k ) |
25 |
13 14 24
|
syl2anc |
|- ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> ( { <. I , k >. } ` I ) = k ) |
26 |
23 25
|
eqtrd |
|- ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> ( ( z u. { <. I , k >. } ) ` I ) = k ) |
27 |
26
|
adantr |
|- ( ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) /\ f = ( z u. { <. I , k >. } ) ) -> ( ( z u. { <. I , k >. } ) ` I ) = k ) |
28 |
7 27
|
eqtrd |
|- ( ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) /\ f = ( z u. { <. I , k >. } ) ) -> ( f ` I ) = k ) |
29 |
|
simpr |
|- ( ( ( ph /\ k e. C ) /\ f e. ran F ) -> f e. ran F ) |
30 |
|
uneq1 |
|- ( x = z -> ( x u. { <. I , k >. } ) = ( z u. { <. I , k >. } ) ) |
31 |
30
|
cbvmptv |
|- ( x e. A |-> ( x u. { <. I , k >. } ) ) = ( z e. A |-> ( z u. { <. I , k >. } ) ) |
32 |
5 31
|
eqtri |
|- F = ( z e. A |-> ( z u. { <. I , k >. } ) ) |
33 |
|
vex |
|- z e. _V |
34 |
|
snex |
|- { <. I , k >. } e. _V |
35 |
33 34
|
unex |
|- ( z u. { <. I , k >. } ) e. _V |
36 |
32 35
|
elrnmpti |
|- ( f e. ran F <-> E. z e. A f = ( z u. { <. I , k >. } ) ) |
37 |
29 36
|
sylib |
|- ( ( ( ph /\ k e. C ) /\ f e. ran F ) -> E. z e. A f = ( z u. { <. I , k >. } ) ) |
38 |
28 37
|
r19.29a |
|- ( ( ( ph /\ k e. C ) /\ f e. ran F ) -> ( f ` I ) = k ) |
39 |
38
|
ralrimiva |
|- ( ( ph /\ k e. C ) -> A. f e. ran F ( f ` I ) = k ) |
40 |
39
|
ralrimiva |
|- ( ph -> A. k e. C A. f e. ran F ( f ` I ) = k ) |
41 |
|
invdisj |
|- ( A. k e. C A. f e. ran F ( f ` I ) = k -> Disj_ k e. C ran F ) |
42 |
40 41
|
syl |
|- ( ph -> Disj_ k e. C ran F ) |