| Step | Hyp | Ref | Expression | 
						
							| 1 |  | actfunsn.1 |  |-  ( ( ph /\ k e. C ) -> A C_ ( C ^m B ) ) | 
						
							| 2 |  | actfunsn.2 |  |-  ( ph -> C e. _V ) | 
						
							| 3 |  | actfunsn.3 |  |-  ( ph -> I e. V ) | 
						
							| 4 |  | actfunsn.4 |  |-  ( ph -> -. I e. B ) | 
						
							| 5 |  | actfunsn.5 |  |-  F = ( x e. A |-> ( x u. { <. I , k >. } ) ) | 
						
							| 6 |  | simpr |  |-  ( ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) /\ f = ( z u. { <. I , k >. } ) ) -> f = ( z u. { <. I , k >. } ) ) | 
						
							| 7 | 6 | fveq1d |  |-  ( ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) /\ f = ( z u. { <. I , k >. } ) ) -> ( f ` I ) = ( ( z u. { <. I , k >. } ) ` I ) ) | 
						
							| 8 | 1 | ad2antrr |  |-  ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> A C_ ( C ^m B ) ) | 
						
							| 9 |  | simpr |  |-  ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> z e. A ) | 
						
							| 10 | 8 9 | sseldd |  |-  ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> z e. ( C ^m B ) ) | 
						
							| 11 |  | elmapfn |  |-  ( z e. ( C ^m B ) -> z Fn B ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> z Fn B ) | 
						
							| 13 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> I e. V ) | 
						
							| 14 |  | simpllr |  |-  ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> k e. C ) | 
						
							| 15 |  | fnsng |  |-  ( ( I e. V /\ k e. C ) -> { <. I , k >. } Fn { I } ) | 
						
							| 16 | 13 14 15 | syl2anc |  |-  ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> { <. I , k >. } Fn { I } ) | 
						
							| 17 |  | disjsn |  |-  ( ( B i^i { I } ) = (/) <-> -. I e. B ) | 
						
							| 18 | 4 17 | sylibr |  |-  ( ph -> ( B i^i { I } ) = (/) ) | 
						
							| 19 | 18 | ad3antrrr |  |-  ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> ( B i^i { I } ) = (/) ) | 
						
							| 20 |  | snidg |  |-  ( I e. V -> I e. { I } ) | 
						
							| 21 | 13 20 | syl |  |-  ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> I e. { I } ) | 
						
							| 22 |  | fvun2 |  |-  ( ( z Fn B /\ { <. I , k >. } Fn { I } /\ ( ( B i^i { I } ) = (/) /\ I e. { I } ) ) -> ( ( z u. { <. I , k >. } ) ` I ) = ( { <. I , k >. } ` I ) ) | 
						
							| 23 | 12 16 19 21 22 | syl112anc |  |-  ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> ( ( z u. { <. I , k >. } ) ` I ) = ( { <. I , k >. } ` I ) ) | 
						
							| 24 |  | fvsng |  |-  ( ( I e. V /\ k e. C ) -> ( { <. I , k >. } ` I ) = k ) | 
						
							| 25 | 13 14 24 | syl2anc |  |-  ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> ( { <. I , k >. } ` I ) = k ) | 
						
							| 26 | 23 25 | eqtrd |  |-  ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) -> ( ( z u. { <. I , k >. } ) ` I ) = k ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) /\ f = ( z u. { <. I , k >. } ) ) -> ( ( z u. { <. I , k >. } ) ` I ) = k ) | 
						
							| 28 | 7 27 | eqtrd |  |-  ( ( ( ( ( ph /\ k e. C ) /\ f e. ran F ) /\ z e. A ) /\ f = ( z u. { <. I , k >. } ) ) -> ( f ` I ) = k ) | 
						
							| 29 |  | simpr |  |-  ( ( ( ph /\ k e. C ) /\ f e. ran F ) -> f e. ran F ) | 
						
							| 30 |  | uneq1 |  |-  ( x = z -> ( x u. { <. I , k >. } ) = ( z u. { <. I , k >. } ) ) | 
						
							| 31 | 30 | cbvmptv |  |-  ( x e. A |-> ( x u. { <. I , k >. } ) ) = ( z e. A |-> ( z u. { <. I , k >. } ) ) | 
						
							| 32 | 5 31 | eqtri |  |-  F = ( z e. A |-> ( z u. { <. I , k >. } ) ) | 
						
							| 33 |  | vex |  |-  z e. _V | 
						
							| 34 |  | snex |  |-  { <. I , k >. } e. _V | 
						
							| 35 | 33 34 | unex |  |-  ( z u. { <. I , k >. } ) e. _V | 
						
							| 36 | 32 35 | elrnmpti |  |-  ( f e. ran F <-> E. z e. A f = ( z u. { <. I , k >. } ) ) | 
						
							| 37 | 29 36 | sylib |  |-  ( ( ( ph /\ k e. C ) /\ f e. ran F ) -> E. z e. A f = ( z u. { <. I , k >. } ) ) | 
						
							| 38 | 28 37 | r19.29a |  |-  ( ( ( ph /\ k e. C ) /\ f e. ran F ) -> ( f ` I ) = k ) | 
						
							| 39 | 38 | ralrimiva |  |-  ( ( ph /\ k e. C ) -> A. f e. ran F ( f ` I ) = k ) | 
						
							| 40 | 39 | ralrimiva |  |-  ( ph -> A. k e. C A. f e. ran F ( f ` I ) = k ) | 
						
							| 41 |  | invdisj |  |-  ( A. k e. C A. f e. ran F ( f ` I ) = k -> Disj_ k e. C ran F ) | 
						
							| 42 | 40 41 | syl |  |-  ( ph -> Disj_ k e. C ran F ) |