Metamath Proof Explorer


Theorem actfunsnrndisj

Description: The action F of extending function from B to C with new values at point I yields different functions. (Contributed by Thierry Arnoux, 9-Dec-2021)

Ref Expression
Hypotheses actfunsn.1 φ k C A C B
actfunsn.2 φ C V
actfunsn.3 φ I V
actfunsn.4 φ ¬ I B
actfunsn.5 F = x A x I k
Assertion actfunsnrndisj φ Disj k C ran F

Proof

Step Hyp Ref Expression
1 actfunsn.1 φ k C A C B
2 actfunsn.2 φ C V
3 actfunsn.3 φ I V
4 actfunsn.4 φ ¬ I B
5 actfunsn.5 F = x A x I k
6 simpr φ k C f ran F z A f = z I k f = z I k
7 6 fveq1d φ k C f ran F z A f = z I k f I = z I k I
8 1 ad2antrr φ k C f ran F z A A C B
9 simpr φ k C f ran F z A z A
10 8 9 sseldd φ k C f ran F z A z C B
11 elmapfn z C B z Fn B
12 10 11 syl φ k C f ran F z A z Fn B
13 3 ad3antrrr φ k C f ran F z A I V
14 simpllr φ k C f ran F z A k C
15 fnsng I V k C I k Fn I
16 13 14 15 syl2anc φ k C f ran F z A I k Fn I
17 disjsn B I = ¬ I B
18 4 17 sylibr φ B I =
19 18 ad3antrrr φ k C f ran F z A B I =
20 snidg I V I I
21 13 20 syl φ k C f ran F z A I I
22 fvun2 z Fn B I k Fn I B I = I I z I k I = I k I
23 12 16 19 21 22 syl112anc φ k C f ran F z A z I k I = I k I
24 fvsng I V k C I k I = k
25 13 14 24 syl2anc φ k C f ran F z A I k I = k
26 23 25 eqtrd φ k C f ran F z A z I k I = k
27 26 adantr φ k C f ran F z A f = z I k z I k I = k
28 7 27 eqtrd φ k C f ran F z A f = z I k f I = k
29 simpr φ k C f ran F f ran F
30 uneq1 x = z x I k = z I k
31 30 cbvmptv x A x I k = z A z I k
32 5 31 eqtri F = z A z I k
33 vex z V
34 snex I k V
35 33 34 unex z I k V
36 32 35 elrnmpti f ran F z A f = z I k
37 29 36 sylib φ k C f ran F z A f = z I k
38 28 37 r19.29a φ k C f ran F f I = k
39 38 ralrimiva φ k C f ran F f I = k
40 39 ralrimiva φ k C f ran F f I = k
41 invdisj k C f ran F f I = k Disj k C ran F
42 40 41 syl φ Disj k C ran F