Metamath Proof Explorer


Theorem itgexpif

Description: The basis for the circle method in the form of trigonometric sums. Proposition of Nathanson p. 123. (Contributed by Thierry Arnoux, 2-Dec-2021)

Ref Expression
Assertion itgexpif N01ei2πNxdx=ifN=010

Proof

Step Hyp Ref Expression
1 oveq1 N=0Nx=0x
2 1 oveq2d N=0i2πNx=i2π0x
3 2 fveq2d N=0ei2πNx=ei2π0x
4 ioossre 01
5 ax-resscn
6 4 5 sstri 01
7 6 sseli x01x
8 7 mul02d x010x=0
9 8 oveq2d x01i2π0x=i2π0
10 ax-icn i
11 2cn 2
12 picn π
13 11 12 mulcli 2π
14 10 13 mulcli i2π
15 14 mul01i i2π0=0
16 9 15 eqtrdi x01i2π0x=0
17 16 fveq2d x01ei2π0x=e0
18 ef0 e0=1
19 17 18 eqtrdi x01ei2π0x=1
20 3 19 sylan9eq N=0x01ei2πNx=1
21 20 ralrimiva N=0x01ei2πNx=1
22 itgeq2 x01ei2πNx=101ei2πNxdx=011dx
23 21 22 syl N=001ei2πNxdx=011dx
24 ioombl 01domvol
25 0re 0
26 1re 1
27 ioovolcl 01vol01
28 25 26 27 mp2an vol01
29 ax-1cn 1
30 itgconst 01domvolvol011011dx=1vol01
31 24 28 29 30 mp3an 011dx=1vol01
32 0le1 01
33 volioo 0101vol01=10
34 25 26 32 33 mp3an vol01=10
35 29 subid1i 10=1
36 34 35 eqtri vol01=1
37 36 oveq2i 1vol01=11
38 29 mulridi 11=1
39 31 37 38 3eqtri 011dx=1
40 23 39 eqtrdi N=001ei2πNxdx=1
41 40 adantl NN=001ei2πNxdx=1
42 41 eqcomd NN=01=01ei2πNxdx
43 ioomax −∞+∞=
44 43 eqcomi =−∞+∞
45 0red N¬N=00
46 1red N¬N=01
47 32 a1i N¬N=001
48 5 a1i N¬N=0
49 48 sselda N¬N=0yy
50 10 a1i N¬N=0i
51 2cnd N¬N=02
52 12 a1i N¬N=0π
53 51 52 mulcld N¬N=02π
54 50 53 mulcld N¬N=0i2π
55 simpl N¬N=0N
56 55 zcnd N¬N=0N
57 54 56 mulcld N¬N=0i2π N
58 57 adantr N¬N=0yi2π N
59 simpr N¬N=0yy
60 58 59 mulcld N¬N=0yi2π Ny
61 60 efcld N¬N=0yei2π Ny
62 49 61 syldan N¬N=0yei2π Ny
63 57 adantr N¬N=0yi2π N
64 ine0 i0
65 2ne0 20
66 pipos 0<π
67 25 66 gtneii π0
68 11 12 65 67 mulne0i 2π0
69 10 13 64 68 mulne0i i2π0
70 69 a1i N¬N=0i2π0
71 simpr N¬N=0¬N=0
72 71 neqned N¬N=0N0
73 54 56 70 72 mulne0d N¬N=0i2π N0
74 73 adantr N¬N=0yi2π N0
75 62 63 74 divcld N¬N=0yei2π Nyi2π N
76 75 fmpttd N¬N=0yei2π Nyi2π N:
77 reelprrecn
78 77 a1i N¬N=0
79 cnelprrecn
80 79 a1i N¬N=0
81 63 49 mulcld N¬N=0yi2π Ny
82 simpr N¬N=0zz
83 82 efcld N¬N=0zez
84 57 adantr N¬N=0zi2π N
85 73 adantr N¬N=0zi2π N0
86 83 84 85 divcld N¬N=0zezi2π N
87 26 a1i N¬N=0y1
88 78 dvmptid N¬N=0dyydy=y1
89 78 49 87 88 57 dvmptcmul N¬N=0dyi2π Nydy=yi2π N1
90 63 mulridd N¬N=0yi2π N1=i2π N
91 90 mpteq2dva N¬N=0yi2π N1=yi2π N
92 89 91 eqtrd N¬N=0dyi2π Nydy=yi2π N
93 dvef Dexp=exp
94 eff exp:
95 94 a1i N¬N=0exp:
96 95 feqmptd N¬N=0exp=zez
97 96 oveq2d N¬N=0Dexp=dzezdz
98 93 97 96 3eqtr3a N¬N=0dzezdz=zez
99 80 83 83 98 57 73 dvmptdivc N¬N=0dzezi2π Ndz=zezi2π N
100 fveq2 z=i2π Nyez=ei2π Ny
101 100 oveq1d z=i2π Nyezi2π N=ei2π Nyi2π N
102 78 80 81 63 86 86 92 99 101 101 dvmptco N¬N=0dyei2π Nyi2π Ndy=yei2π Nyi2π Ni2π N
103 62 63 74 divcan1d N¬N=0yei2π Nyi2π Ni2π N=ei2π Ny
104 103 mpteq2dva N¬N=0yei2π Nyi2π Ni2π N=yei2π Ny
105 102 104 eqtrd N¬N=0dyei2π Nyi2π Ndy=yei2π Ny
106 efcn exp:cn
107 106 a1i N¬N=0exp:cn
108 resmpt yi2π Ny=yi2π Ny
109 5 108 mp1i N¬N=0yi2π Ny=yi2π Ny
110 eqid yi2π Ny=yi2π Ny
111 110 mulc1cncf i2π Nyi2π Ny:cn
112 57 111 syl N¬N=0yi2π Ny:cn
113 rescncf yi2π Ny:cnyi2π Ny:cn
114 5 113 mp1i N¬N=0yi2π Ny:cnyi2π Ny:cn
115 112 114 mpd N¬N=0yi2π Ny:cn
116 109 115 eqeltrrd N¬N=0yi2π Ny:cn
117 107 116 cncfmpt1f N¬N=0yei2π Ny:cn
118 105 117 eqeltrd N¬N=0dyei2π Nyi2π Ndy:cn
119 44 45 46 47 76 118 ftc2re N¬N=001dyei2π Nyi2π Ndyxdx=yei2π Nyi2π N1yei2π Nyi2π N0
120 4 sseli x01x
121 105 adantr N¬N=0xdyei2π Nyi2π Ndy=yei2π Ny
122 121 fveq1d N¬N=0xdyei2π Nyi2π Ndyx=yei2π Nyx
123 oveq2 y=xi2π Ny=i2π Nx
124 123 fveq2d y=xei2π Ny=ei2π Nx
125 124 cbvmptv yei2π Ny=xei2π Nx
126 125 a1i N¬N=0yei2π Ny=xei2π Nx
127 57 adantr N¬N=0xi2π N
128 48 sselda N¬N=0xx
129 127 128 mulcld N¬N=0xi2π Nx
130 129 efcld N¬N=0xei2π Nx
131 126 130 fvmpt2d N¬N=0xyei2π Nyx=ei2π Nx
132 14 a1i N¬N=0xi2π
133 56 adantr N¬N=0xN
134 132 133 128 mulassd N¬N=0xi2π Nx=i2πNx
135 134 fveq2d N¬N=0xei2π Nx=ei2πNx
136 131 135 eqtrd N¬N=0xyei2π Nyx=ei2πNx
137 122 136 eqtrd N¬N=0xdyei2π Nyi2π Ndyx=ei2πNx
138 120 137 sylan2 N¬N=0x01dyei2π Nyi2π Ndyx=ei2πNx
139 138 ralrimiva N¬N=0x01dyei2π Nyi2π Ndyx=ei2πNx
140 itgeq2 x01dyei2π Nyi2π Ndyx=ei2πNx01dyei2π Nyi2π Ndyxdx=01ei2πNxdx
141 139 140 syl N¬N=001dyei2π Nyi2π Ndyxdx=01ei2πNxdx
142 eqidd N¬N=0yei2π Nyi2π N=yei2π Nyi2π N
143 simpr N¬N=0y=1y=1
144 143 oveq2d N¬N=0y=1i2π Ny=i2π N1
145 144 fveq2d N¬N=0y=1ei2π Ny=ei2π N1
146 145 oveq1d N¬N=0y=1ei2π Nyi2π N=ei2π N1i2π N
147 29 a1i N¬N=01
148 57 147 mulcld N¬N=0i2π N1
149 148 efcld N¬N=0ei2π N1
150 149 57 73 divcld N¬N=0ei2π N1i2π N
151 142 146 46 150 fvmptd N¬N=0yei2π Nyi2π N1=ei2π N1i2π N
152 57 mulridd N¬N=0i2π N1=i2π N
153 152 fveq2d N¬N=0ei2π N1=ei2π N
154 ef2kpi Nei2π N=1
155 55 154 syl N¬N=0ei2π N=1
156 153 155 eqtrd N¬N=0ei2π N1=1
157 156 oveq1d N¬N=0ei2π N1i2π N=1i2π N
158 151 157 eqtrd N¬N=0yei2π Nyi2π N1=1i2π N
159 simpr N¬N=0y=0y=0
160 159 oveq2d N¬N=0y=0i2π Ny=i2π N0
161 160 fveq2d N¬N=0y=0ei2π Ny=ei2π N0
162 161 oveq1d N¬N=0y=0ei2π Nyi2π N=ei2π N0i2π N
163 5 45 sselid N¬N=00
164 57 163 mulcld N¬N=0i2π N0
165 164 efcld N¬N=0ei2π N0
166 165 57 73 divcld N¬N=0ei2π N0i2π N
167 142 162 45 166 fvmptd N¬N=0yei2π Nyi2π N0=ei2π N0i2π N
168 57 mul01d N¬N=0i2π N0=0
169 168 fveq2d N¬N=0ei2π N0=e0
170 169 18 eqtrdi N¬N=0ei2π N0=1
171 170 oveq1d N¬N=0ei2π N0i2π N=1i2π N
172 167 171 eqtrd N¬N=0yei2π Nyi2π N0=1i2π N
173 158 172 oveq12d N¬N=0yei2π Nyi2π N1yei2π Nyi2π N0=1i2π N1i2π N
174 157 150 eqeltrrd N¬N=01i2π N
175 174 subidd N¬N=01i2π N1i2π N=0
176 173 175 eqtrd N¬N=0yei2π Nyi2π N1yei2π Nyi2π N0=0
177 119 141 176 3eqtr3d N¬N=001ei2πNxdx=0
178 177 eqcomd N¬N=00=01ei2πNxdx
179 42 178 ifeqda NifN=010=01ei2πNxdx
180 179 eqcomd N01ei2πNxdx=ifN=010