Metamath Proof Explorer


Theorem dvmptdivc

Description: Function-builder for derivative, division rule for constant divisor. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvmptadd.s φS
dvmptadd.a φxXA
dvmptadd.b φxXBV
dvmptadd.da φdxXAdSx=xXB
dvmptcmul.c φC
dvmptdivc.0 φC0
Assertion dvmptdivc φdxXACdSx=xXBC

Proof

Step Hyp Ref Expression
1 dvmptadd.s φS
2 dvmptadd.a φxXA
3 dvmptadd.b φxXBV
4 dvmptadd.da φdxXAdSx=xXB
5 dvmptcmul.c φC
6 dvmptdivc.0 φC0
7 5 6 reccld φ1C
8 1 2 3 4 7 dvmptcmul φdxX1CAdSx=xX1CB
9 5 adantr φxXC
10 6 adantr φxXC0
11 2 9 10 divrec2d φxXAC=1CA
12 11 mpteq2dva φxXAC=xX1CA
13 12 oveq2d φdxXACdSx=dxX1CAdSx
14 1 2 3 4 dvmptcl φxXB
15 14 9 10 divrec2d φxXBC=1CB
16 15 mpteq2dva φxXBC=xX1CB
17 8 13 16 3eqtr4d φdxXACdSx=xXBC