Metamath Proof Explorer


Theorem dvmptdivc

Description: Function-builder for derivative, division rule for constant divisor. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvmptadd.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
dvmptadd.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
dvmptadd.b ( ( 𝜑𝑥𝑋 ) → 𝐵𝑉 )
dvmptadd.da ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
dvmptcmul.c ( 𝜑𝐶 ∈ ℂ )
dvmptdivc.0 ( 𝜑𝐶 ≠ 0 )
Assertion dvmptdivc ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) = ( 𝑥𝑋 ↦ ( 𝐵 / 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 dvmptadd.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 dvmptadd.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
3 dvmptadd.b ( ( 𝜑𝑥𝑋 ) → 𝐵𝑉 )
4 dvmptadd.da ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
5 dvmptcmul.c ( 𝜑𝐶 ∈ ℂ )
6 dvmptdivc.0 ( 𝜑𝐶 ≠ 0 )
7 5 6 reccld ( 𝜑 → ( 1 / 𝐶 ) ∈ ℂ )
8 1 2 3 4 7 dvmptcmul ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( ( 1 / 𝐶 ) · 𝐴 ) ) ) = ( 𝑥𝑋 ↦ ( ( 1 / 𝐶 ) · 𝐵 ) ) )
9 5 adantr ( ( 𝜑𝑥𝑋 ) → 𝐶 ∈ ℂ )
10 6 adantr ( ( 𝜑𝑥𝑋 ) → 𝐶 ≠ 0 )
11 2 9 10 divrec2d ( ( 𝜑𝑥𝑋 ) → ( 𝐴 / 𝐶 ) = ( ( 1 / 𝐶 ) · 𝐴 ) )
12 11 mpteq2dva ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) = ( 𝑥𝑋 ↦ ( ( 1 / 𝐶 ) · 𝐴 ) ) )
13 12 oveq2d ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) = ( 𝑆 D ( 𝑥𝑋 ↦ ( ( 1 / 𝐶 ) · 𝐴 ) ) ) )
14 1 2 3 4 dvmptcl ( ( 𝜑𝑥𝑋 ) → 𝐵 ∈ ℂ )
15 14 9 10 divrec2d ( ( 𝜑𝑥𝑋 ) → ( 𝐵 / 𝐶 ) = ( ( 1 / 𝐶 ) · 𝐵 ) )
16 15 mpteq2dva ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐵 / 𝐶 ) ) = ( 𝑥𝑋 ↦ ( ( 1 / 𝐶 ) · 𝐵 ) ) )
17 8 13 16 3eqtr4d ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) = ( 𝑥𝑋 ↦ ( 𝐵 / 𝐶 ) ) )