Metamath Proof Explorer


Theorem dvmptneg

Description: Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptadd.s φS
dvmptadd.a φxXA
dvmptadd.b φxXBV
dvmptadd.da φdxXAdSx=xXB
Assertion dvmptneg φdxXAdSx=xXB

Proof

Step Hyp Ref Expression
1 dvmptadd.s φS
2 dvmptadd.a φxXA
3 dvmptadd.b φxXBV
4 dvmptadd.da φdxXAdSx=xXB
5 neg1cn 1
6 5 a1i φ1
7 1 2 3 4 6 dvmptcmul φdxX-1AdSx=xX-1B
8 2 mulm1d φxX-1A=A
9 8 mpteq2dva φxX-1A=xXA
10 9 oveq2d φdxX-1AdSx=dxXAdSx
11 1 2 3 4 dvmptcl φxXB
12 11 mulm1d φxX-1B=B
13 12 mpteq2dva φxX-1B=xXB
14 7 10 13 3eqtr3d φdxXAdSx=xXB