Metamath Proof Explorer


Theorem dvmptcmul

Description: Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptadd.s φS
dvmptadd.a φxXA
dvmptadd.b φxXBV
dvmptadd.da φdxXAdSx=xXB
dvmptcmul.c φC
Assertion dvmptcmul φdxXCAdSx=xXCB

Proof

Step Hyp Ref Expression
1 dvmptadd.s φS
2 dvmptadd.a φxXA
3 dvmptadd.b φxXBV
4 dvmptadd.da φdxXAdSx=xXB
5 dvmptcmul.c φC
6 5 adantr φxXC
7 0cnd φxX0
8 5 adantr φxSC
9 0cnd φxS0
10 1 5 dvmptc φdxSCdSx=xS0
11 4 dmeqd φdomdxXAdSx=domxXB
12 3 ralrimiva φxXBV
13 dmmptg xXBVdomxXB=X
14 12 13 syl φdomxXB=X
15 11 14 eqtrd φdomdxXAdSx=X
16 dvbsss domdxXAdSxS
17 15 16 eqsstrrdi φXS
18 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
19 eqid TopOpenfld=TopOpenfld
20 19 cnfldtopon TopOpenfldTopOn
21 recnprss SS
22 1 21 syl φS
23 resttopon TopOpenfldTopOnSTopOpenfld𝑡STopOnS
24 20 22 23 sylancr φTopOpenfld𝑡STopOnS
25 topontop TopOpenfld𝑡STopOnSTopOpenfld𝑡STop
26 24 25 syl φTopOpenfld𝑡STop
27 toponuni TopOpenfld𝑡STopOnSS=TopOpenfld𝑡S
28 24 27 syl φS=TopOpenfld𝑡S
29 17 28 sseqtrd φXTopOpenfld𝑡S
30 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
31 30 ntrss2 TopOpenfld𝑡STopXTopOpenfld𝑡SintTopOpenfld𝑡SXX
32 26 29 31 syl2anc φintTopOpenfld𝑡SXX
33 2 fmpttd φxXA:X
34 22 33 17 18 19 dvbssntr φdomdxXAdSxintTopOpenfld𝑡SX
35 15 34 eqsstrrd φXintTopOpenfld𝑡SX
36 32 35 eqssd φintTopOpenfld𝑡SX=X
37 1 8 9 10 17 18 19 36 dvmptres2 φdxXCdSx=xX0
38 1 6 7 37 2 3 4 dvmptmul φdxXCAdSx=xX0A+BC
39 2 mul02d φxX0A=0
40 39 oveq1d φxX0A+BC=0+BC
41 1 2 3 4 dvmptcl φxXB
42 41 6 mulcld φxXBC
43 42 addlidd φxX0+BC=BC
44 41 6 mulcomd φxXBC=CB
45 40 43 44 3eqtrd φxX0A+BC=CB
46 45 mpteq2dva φxX0A+BC=xXCB
47 38 46 eqtrd φdxXCAdSx=xXCB