Description: Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvmptadd.s | |
|
dvmptadd.a | |
||
dvmptadd.b | |
||
dvmptadd.da | |
||
dvmptcmul.c | |
||
Assertion | dvmptcmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptadd.s | |
|
2 | dvmptadd.a | |
|
3 | dvmptadd.b | |
|
4 | dvmptadd.da | |
|
5 | dvmptcmul.c | |
|
6 | 5 | adantr | |
7 | 0cnd | |
|
8 | 5 | adantr | |
9 | 0cnd | |
|
10 | 1 5 | dvmptc | |
11 | 4 | dmeqd | |
12 | 3 | ralrimiva | |
13 | dmmptg | |
|
14 | 12 13 | syl | |
15 | 11 14 | eqtrd | |
16 | dvbsss | |
|
17 | 15 16 | eqsstrrdi | |
18 | eqid | |
|
19 | eqid | |
|
20 | 19 | cnfldtopon | |
21 | recnprss | |
|
22 | 1 21 | syl | |
23 | resttopon | |
|
24 | 20 22 23 | sylancr | |
25 | topontop | |
|
26 | 24 25 | syl | |
27 | toponuni | |
|
28 | 24 27 | syl | |
29 | 17 28 | sseqtrd | |
30 | eqid | |
|
31 | 30 | ntrss2 | |
32 | 26 29 31 | syl2anc | |
33 | 2 | fmpttd | |
34 | 22 33 17 18 19 | dvbssntr | |
35 | 15 34 | eqsstrrd | |
36 | 32 35 | eqssd | |
37 | 1 8 9 10 17 18 19 36 | dvmptres2 | |
38 | 1 6 7 37 2 3 4 | dvmptmul | |
39 | 2 | mul02d | |
40 | 39 | oveq1d | |
41 | 1 2 3 4 | dvmptcl | |
42 | 41 6 | mulcld | |
43 | 42 | addlidd | |
44 | 41 6 | mulcomd | |
45 | 40 43 44 | 3eqtrd | |
46 | 45 | mpteq2dva | |
47 | 38 46 | eqtrd | |