Metamath Proof Explorer


Theorem dvmptres2

Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptadd.s φS
dvmptadd.a φxXA
dvmptadd.b φxXBV
dvmptadd.da φdxXAdSx=xXB
dvmptres2.z φZX
dvmptres2.j J=K𝑡S
dvmptres2.k K=TopOpenfld
dvmptres2.i φintJZ=Y
Assertion dvmptres2 φdxZAdSx=xYB

Proof

Step Hyp Ref Expression
1 dvmptadd.s φS
2 dvmptadd.a φxXA
3 dvmptadd.b φxXBV
4 dvmptadd.da φdxXAdSx=xXB
5 dvmptres2.z φZX
6 dvmptres2.j J=K𝑡S
7 dvmptres2.k K=TopOpenfld
8 dvmptres2.i φintJZ=Y
9 recnprss SS
10 1 9 syl φS
11 2 fmpttd φxXA:X
12 4 dmeqd φdomdxXAdSx=domxXB
13 3 ralrimiva φxXBV
14 dmmptg xXBVdomxXB=X
15 13 14 syl φdomxXB=X
16 12 15 eqtrd φdomdxXAdSx=X
17 dvbsss domdxXAdSxS
18 16 17 eqsstrrdi φXS
19 5 18 sstrd φZS
20 7 6 dvres SxXA:XXSZSSDxXAZ=dxXAdSxintJZ
21 10 11 18 19 20 syl22anc φSDxXAZ=dxXAdSxintJZ
22 5 resmptd φxXAZ=xZA
23 22 oveq2d φSDxXAZ=dxZAdSx
24 4 reseq1d φdxXAdSxintJZ=xXBintJZ
25 8 reseq2d φxXBintJZ=xXBY
26 7 cnfldtopon KTopOn
27 resttopon KTopOnSK𝑡STopOnS
28 26 10 27 sylancr φK𝑡STopOnS
29 6 28 eqeltrid φJTopOnS
30 topontop JTopOnSJTop
31 29 30 syl φJTop
32 toponuni JTopOnSS=J
33 29 32 syl φS=J
34 19 33 sseqtrd φZJ
35 eqid J=J
36 35 ntrss2 JTopZJintJZZ
37 31 34 36 syl2anc φintJZZ
38 8 37 eqsstrrd φYZ
39 38 5 sstrd φYX
40 39 resmptd φxXBY=xYB
41 24 25 40 3eqtrd φdxXAdSxintJZ=xYB
42 21 23 41 3eqtr3d φdxZAdSx=xYB