Metamath Proof Explorer


Theorem dvmptres

Description: Function-builder for derivative: restrict a derivative to an open subset. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptadd.s φS
dvmptadd.a φxXA
dvmptadd.b φxXBV
dvmptadd.da φdxXAdSx=xXB
dvmptres.y φYX
dvmptres.j J=K𝑡S
dvmptres.k K=TopOpenfld
dvmptres.t φYJ
Assertion dvmptres φdxYAdSx=xYB

Proof

Step Hyp Ref Expression
1 dvmptadd.s φS
2 dvmptadd.a φxXA
3 dvmptadd.b φxXBV
4 dvmptadd.da φdxXAdSx=xXB
5 dvmptres.y φYX
6 dvmptres.j J=K𝑡S
7 dvmptres.k K=TopOpenfld
8 dvmptres.t φYJ
9 7 cnfldtop KTop
10 resttop KTopSK𝑡STop
11 9 1 10 sylancr φK𝑡STop
12 6 11 eqeltrid φJTop
13 isopn3i JTopYJintJY=Y
14 12 8 13 syl2anc φintJY=Y
15 1 2 3 4 5 6 7 14 dvmptres2 φdxYAdSx=xYB