Metamath Proof Explorer


Theorem efcn

Description: The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007) (Revised by Mario Carneiro, 20-Jun-2015)

Ref Expression
Assertion efcn exp:cn

Proof

Step Hyp Ref Expression
1 ssid
2 eff exp:
3 dvef Dexp=exp
4 3 feq1i exp:exp:
5 2 4 mpbir exp:
6 5 fdmi domexp=
7 dvcn exp:domexp=exp:cn
8 6 7 mpan2 exp:exp:cn
9 1 2 1 8 mp3an exp:cn