| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-sin |
|
| 2 |
|
eqid |
|
| 3 |
2
|
subcn |
|
| 4 |
3
|
a1i |
|
| 5 |
|
efcn |
|
| 6 |
5
|
a1i |
|
| 7 |
|
ax-icn |
|
| 8 |
|
eqid |
|
| 9 |
8
|
mulc1cncf |
|
| 10 |
7 9
|
mp1i |
|
| 11 |
6 10
|
cncfmpt1f |
|
| 12 |
|
negicn |
|
| 13 |
|
eqid |
|
| 14 |
13
|
mulc1cncf |
|
| 15 |
12 14
|
mp1i |
|
| 16 |
6 15
|
cncfmpt1f |
|
| 17 |
2 4 11 16
|
cncfmpt2f |
|
| 18 |
|
cncff |
|
| 19 |
17 18
|
syl |
|
| 20 |
|
eqid |
|
| 21 |
20
|
fmpt |
|
| 22 |
19 21
|
sylibr |
|
| 23 |
|
eqidd |
|
| 24 |
|
eqidd |
|
| 25 |
|
oveq1 |
|
| 26 |
22 23 24 25
|
fmptcof |
|
| 27 |
|
2mulicn |
|
| 28 |
|
2muline0 |
|
| 29 |
|
eqid |
|
| 30 |
29
|
divccncf |
|
| 31 |
27 28 30
|
mp2an |
|
| 32 |
31
|
a1i |
|
| 33 |
17 32
|
cncfco |
|
| 34 |
26 33
|
eqeltrrd |
|
| 35 |
34
|
mptru |
|
| 36 |
1 35
|
eqeltri |
|