Metamath Proof Explorer


Theorem sincn

Description: Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007) (Revised by Mario Carneiro, 3-Sep-2014)

Ref Expression
Assertion sincn sin:cn

Proof

Step Hyp Ref Expression
1 df-sin sin=xeixeix2i
2 eqid TopOpenfld=TopOpenfld
3 2 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
4 3 a1i TopOpenfld×tTopOpenfldCnTopOpenfld
5 efcn exp:cn
6 5 a1i exp:cn
7 ax-icn i
8 eqid xix=xix
9 8 mulc1cncf ixix:cn
10 7 9 mp1i xix:cn
11 6 10 cncfmpt1f xeix:cn
12 negicn i
13 eqid xix=xix
14 13 mulc1cncf ixix:cn
15 12 14 mp1i xix:cn
16 6 15 cncfmpt1f xeix:cn
17 2 4 11 16 cncfmpt2f xeixeix:cn
18 cncff xeixeix:cnxeixeix:
19 17 18 syl xeixeix:
20 eqid xeixeix=xeixeix
21 20 fmpt xeixeixxeixeix:
22 19 21 sylibr xeixeix
23 eqidd xeixeix=xeixeix
24 eqidd yy2i=yy2i
25 oveq1 y=eixeixy2i=eixeix2i
26 22 23 24 25 fmptcof yy2ixeixeix=xeixeix2i
27 2mulicn 2i
28 2muline0 2i0
29 eqid yy2i=yy2i
30 29 divccncf 2i2i0yy2i:cn
31 27 28 30 mp2an yy2i:cn
32 31 a1i yy2i:cn
33 17 32 cncfco yy2ixeixeix:cn
34 26 33 eqeltrrd xeixeix2i:cn
35 34 mptru xeixeix2i:cn
36 1 35 eqeltri sin:cn