| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-sin |
|- sin = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) ) |
| 2 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 3 |
2
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 4 |
3
|
a1i |
|- ( T. -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 5 |
|
efcn |
|- exp e. ( CC -cn-> CC ) |
| 6 |
5
|
a1i |
|- ( T. -> exp e. ( CC -cn-> CC ) ) |
| 7 |
|
ax-icn |
|- _i e. CC |
| 8 |
|
eqid |
|- ( x e. CC |-> ( _i x. x ) ) = ( x e. CC |-> ( _i x. x ) ) |
| 9 |
8
|
mulc1cncf |
|- ( _i e. CC -> ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) ) |
| 10 |
7 9
|
mp1i |
|- ( T. -> ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) ) |
| 11 |
6 10
|
cncfmpt1f |
|- ( T. -> ( x e. CC |-> ( exp ` ( _i x. x ) ) ) e. ( CC -cn-> CC ) ) |
| 12 |
|
negicn |
|- -u _i e. CC |
| 13 |
|
eqid |
|- ( x e. CC |-> ( -u _i x. x ) ) = ( x e. CC |-> ( -u _i x. x ) ) |
| 14 |
13
|
mulc1cncf |
|- ( -u _i e. CC -> ( x e. CC |-> ( -u _i x. x ) ) e. ( CC -cn-> CC ) ) |
| 15 |
12 14
|
mp1i |
|- ( T. -> ( x e. CC |-> ( -u _i x. x ) ) e. ( CC -cn-> CC ) ) |
| 16 |
6 15
|
cncfmpt1f |
|- ( T. -> ( x e. CC |-> ( exp ` ( -u _i x. x ) ) ) e. ( CC -cn-> CC ) ) |
| 17 |
2 4 11 16
|
cncfmpt2f |
|- ( T. -> ( x e. CC |-> ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) ) e. ( CC -cn-> CC ) ) |
| 18 |
|
cncff |
|- ( ( x e. CC |-> ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) ) e. ( CC -cn-> CC ) -> ( x e. CC |-> ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) ) : CC --> CC ) |
| 19 |
17 18
|
syl |
|- ( T. -> ( x e. CC |-> ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) ) : CC --> CC ) |
| 20 |
|
eqid |
|- ( x e. CC |-> ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) ) = ( x e. CC |-> ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) ) |
| 21 |
20
|
fmpt |
|- ( A. x e. CC ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) e. CC <-> ( x e. CC |-> ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) ) : CC --> CC ) |
| 22 |
19 21
|
sylibr |
|- ( T. -> A. x e. CC ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) e. CC ) |
| 23 |
|
eqidd |
|- ( T. -> ( x e. CC |-> ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) ) = ( x e. CC |-> ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) ) ) |
| 24 |
|
eqidd |
|- ( T. -> ( y e. CC |-> ( y / ( 2 x. _i ) ) ) = ( y e. CC |-> ( y / ( 2 x. _i ) ) ) ) |
| 25 |
|
oveq1 |
|- ( y = ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) -> ( y / ( 2 x. _i ) ) = ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) ) |
| 26 |
22 23 24 25
|
fmptcof |
|- ( T. -> ( ( y e. CC |-> ( y / ( 2 x. _i ) ) ) o. ( x e. CC |-> ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) ) ) = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) ) ) |
| 27 |
|
2mulicn |
|- ( 2 x. _i ) e. CC |
| 28 |
|
2muline0 |
|- ( 2 x. _i ) =/= 0 |
| 29 |
|
eqid |
|- ( y e. CC |-> ( y / ( 2 x. _i ) ) ) = ( y e. CC |-> ( y / ( 2 x. _i ) ) ) |
| 30 |
29
|
divccncf |
|- ( ( ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) -> ( y e. CC |-> ( y / ( 2 x. _i ) ) ) e. ( CC -cn-> CC ) ) |
| 31 |
27 28 30
|
mp2an |
|- ( y e. CC |-> ( y / ( 2 x. _i ) ) ) e. ( CC -cn-> CC ) |
| 32 |
31
|
a1i |
|- ( T. -> ( y e. CC |-> ( y / ( 2 x. _i ) ) ) e. ( CC -cn-> CC ) ) |
| 33 |
17 32
|
cncfco |
|- ( T. -> ( ( y e. CC |-> ( y / ( 2 x. _i ) ) ) o. ( x e. CC |-> ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) ) ) e. ( CC -cn-> CC ) ) |
| 34 |
26 33
|
eqeltrrd |
|- ( T. -> ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) ) e. ( CC -cn-> CC ) ) |
| 35 |
34
|
mptru |
|- ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) ) e. ( CC -cn-> CC ) |
| 36 |
1 35
|
eqeltri |
|- sin e. ( CC -cn-> CC ) |