| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncfmpt1f.1 |
|- ( ph -> F e. ( CC -cn-> CC ) ) |
| 2 |
|
cncfmpt1f.2 |
|- ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) |
| 3 |
|
cncff |
|- ( ( x e. X |-> A ) e. ( X -cn-> CC ) -> ( x e. X |-> A ) : X --> CC ) |
| 4 |
2 3
|
syl |
|- ( ph -> ( x e. X |-> A ) : X --> CC ) |
| 5 |
|
eqid |
|- ( x e. X |-> A ) = ( x e. X |-> A ) |
| 6 |
5
|
fmpt |
|- ( A. x e. X A e. CC <-> ( x e. X |-> A ) : X --> CC ) |
| 7 |
4 6
|
sylibr |
|- ( ph -> A. x e. X A e. CC ) |
| 8 |
|
eqidd |
|- ( ph -> ( x e. X |-> A ) = ( x e. X |-> A ) ) |
| 9 |
|
cncff |
|- ( F e. ( CC -cn-> CC ) -> F : CC --> CC ) |
| 10 |
1 9
|
syl |
|- ( ph -> F : CC --> CC ) |
| 11 |
10
|
feqmptd |
|- ( ph -> F = ( y e. CC |-> ( F ` y ) ) ) |
| 12 |
|
fveq2 |
|- ( y = A -> ( F ` y ) = ( F ` A ) ) |
| 13 |
7 8 11 12
|
fmptcof |
|- ( ph -> ( F o. ( x e. X |-> A ) ) = ( x e. X |-> ( F ` A ) ) ) |
| 14 |
2 1
|
cncfco |
|- ( ph -> ( F o. ( x e. X |-> A ) ) e. ( X -cn-> CC ) ) |
| 15 |
13 14
|
eqeltrrd |
|- ( ph -> ( x e. X |-> ( F ` A ) ) e. ( X -cn-> CC ) ) |