Metamath Proof Explorer


Theorem dvef

Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014) (Proof shortened by Mario Carneiro, 10-Feb-2015)

Ref Expression
Assertion dvef D exp = exp

Proof

Step Hyp Ref Expression
1 dvfcn exp : dom exp
2 dvbsss dom exp
3 subcl z x z x
4 3 ancoms x z z x
5 efadd x z x e x + z - x = e x e z x
6 4 5 syldan x z e x + z - x = e x e z x
7 pncan3 x z x + z - x = z
8 7 fveq2d x z e x + z - x = e z
9 6 8 eqtr3d x z e x e z x = e z
10 9 mpteq2dva x z e x e z x = z e z
11 cnex V
12 11 a1i x V
13 fvexd x z e x V
14 fvexd x z e z x V
15 fconstmpt × e x = z e x
16 15 a1i x × e x = z e x
17 eqidd x z e z x = z e z x
18 12 13 14 16 17 offval2 x × e x × f z e z x = z e x e z x
19 eff exp :
20 19 a1i x exp :
21 20 feqmptd x exp = z e z
22 10 18 21 3eqtr4d x × e x × f z e z x = exp
23 22 oveq2d x D × e x × f z e z x = D exp
24 efcl x e x
25 fconstg e x × e x : e x
26 24 25 syl x × e x : e x
27 24 snssd x e x
28 26 27 fssd x × e x :
29 ssidd x
30 efcl z x e z x
31 4 30 syl x z e z x
32 31 fmpttd x z e z x :
33 0cnd x 0
34 1cnd x 1
35 c0ex 0 V
36 35 snid 0 0
37 opelxpi x 0 0 x 0 × 0
38 36 37 mpan2 x x 0 × 0
39 dvconst e x D × e x = × 0
40 24 39 syl x D × e x = × 0
41 38 40 eleqtrrd x x 0 × e x
42 df-br x × e x 0 x 0 × e x
43 41 42 sylibr x x × e x 0
44 20 4 cofmpt x exp z z x = z e z x
45 44 oveq2d x D exp z z x = dz e z x d z
46 4 fmpttd x z z x :
47 oveq1 z = x z x = x x
48 eqid z z x = z z x
49 ovex x x V
50 47 48 49 fvmpt x z z x x = x x
51 subid x x x = 0
52 50 51 eqtrd x z z x x = 0
53 dveflem 0 exp 1
54 52 53 eqbrtrdi x z z x x exp 1
55 1ex 1 V
56 55 snid 1 1
57 opelxpi x 1 1 x 1 × 1
58 56 57 mpan2 x x 1 × 1
59 cnelprrecn
60 59 a1i x
61 simpr x z z
62 1cnd x z 1
63 60 dvmptid x dz z d z = z 1
64 simpl x z x
65 0cnd x z 0
66 id x x
67 60 66 dvmptc x dz x d z = z 0
68 60 61 62 63 64 65 67 dvmptsub x dz z x d z = z 1 0
69 1m0e1 1 0 = 1
70 69 mpteq2i z 1 0 = z 1
71 fconstmpt × 1 = z 1
72 70 71 eqtr4i z 1 0 = × 1
73 68 72 eqtrdi x dz z x d z = × 1
74 58 73 eleqtrrd x x 1 dz z x d z
75 df-br x dz z x d z 1 x 1 dz z x d z
76 74 75 sylibr x x dz z x d z 1
77 eqid TopOpen fld = TopOpen fld
78 20 29 46 29 29 29 34 34 54 76 77 dvcobr x x exp z z x 1 1
79 1t1e1 1 1 = 1
80 78 79 breqtrdi x x exp z z x 1
81 45 80 breqdi x x dz e z x d z 1
82 28 29 32 29 29 33 34 43 81 77 dvmulbr x x × e x × f z e z x 0 z e z x x + 1 × e x x
83 32 66 ffvelrnd x z e z x x
84 83 mul02d x 0 z e z x x = 0
85 fvex e x V
86 85 fvconst2 x × e x x = e x
87 86 oveq2d x 1 × e x x = 1 e x
88 24 mulid2d x 1 e x = e x
89 87 88 eqtrd x 1 × e x x = e x
90 84 89 oveq12d x 0 z e z x x + 1 × e x x = 0 + e x
91 24 addid2d x 0 + e x = e x
92 90 91 eqtrd x 0 z e z x x + 1 × e x x = e x
93 82 92 breqtrd x x × e x × f z e z x e x
94 23 93 breqdi x x exp e x
95 vex x V
96 95 85 breldm x exp e x x dom exp
97 94 96 syl x x dom exp
98 97 ssriv dom exp
99 2 98 eqssi dom exp =
100 99 feq2i exp : dom exp exp :
101 1 100 mpbi exp :
102 101 a1i exp :
103 102 feqmptd D exp = x exp x
104 ffun exp : dom exp Fun exp
105 1 104 ax-mp Fun exp
106 funbrfv Fun exp x exp e x exp x = e x
107 105 94 106 mpsyl x exp x = e x
108 107 mpteq2ia x exp x = x e x
109 103 108 eqtrdi D exp = x e x
110 19 a1i exp :
111 110 feqmptd exp = x e x
112 109 111 eqtr4d D exp = exp
113 112 mptru D exp = exp