Step |
Hyp |
Ref |
Expression |
1 |
|
dvfcn |
⊢ ( ℂ D exp ) : dom ( ℂ D exp ) ⟶ ℂ |
2 |
|
dvbsss |
⊢ dom ( ℂ D exp ) ⊆ ℂ |
3 |
|
subcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑧 − 𝑥 ) ∈ ℂ ) |
4 |
3
|
ancoms |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑧 − 𝑥 ) ∈ ℂ ) |
5 |
|
efadd |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑧 − 𝑥 ) ∈ ℂ ) → ( exp ‘ ( 𝑥 + ( 𝑧 − 𝑥 ) ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) |
6 |
4 5
|
syldan |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑥 + ( 𝑧 − 𝑥 ) ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) |
7 |
|
pncan3 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 + ( 𝑧 − 𝑥 ) ) = 𝑧 ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑥 + ( 𝑧 − 𝑥 ) ) ) = ( exp ‘ 𝑧 ) ) |
9 |
6 8
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑧 − 𝑥 ) ) ) = ( exp ‘ 𝑧 ) ) |
10 |
9
|
mpteq2dva |
⊢ ( 𝑥 ∈ ℂ → ( 𝑧 ∈ ℂ ↦ ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑧 ) ) ) |
11 |
|
cnex |
⊢ ℂ ∈ V |
12 |
11
|
a1i |
⊢ ( 𝑥 ∈ ℂ → ℂ ∈ V ) |
13 |
|
fvexd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ 𝑥 ) ∈ V ) |
14 |
|
fvexd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑧 − 𝑥 ) ) ∈ V ) |
15 |
|
fconstmpt |
⊢ ( ℂ × { ( exp ‘ 𝑥 ) } ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) |
16 |
15
|
a1i |
⊢ ( 𝑥 ∈ ℂ → ( ℂ × { ( exp ‘ 𝑥 ) } ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) |
17 |
|
eqidd |
⊢ ( 𝑥 ∈ ℂ → ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) |
18 |
12 13 14 16 17
|
offval2 |
⊢ ( 𝑥 ∈ ℂ → ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) ) |
19 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
20 |
19
|
a1i |
⊢ ( 𝑥 ∈ ℂ → exp : ℂ ⟶ ℂ ) |
21 |
20
|
feqmptd |
⊢ ( 𝑥 ∈ ℂ → exp = ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑧 ) ) ) |
22 |
10 18 21
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℂ → ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) = exp ) |
23 |
22
|
oveq2d |
⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) ) = ( ℂ D exp ) ) |
24 |
|
efcl |
⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) ∈ ℂ ) |
25 |
|
fconstg |
⊢ ( ( exp ‘ 𝑥 ) ∈ ℂ → ( ℂ × { ( exp ‘ 𝑥 ) } ) : ℂ ⟶ { ( exp ‘ 𝑥 ) } ) |
26 |
24 25
|
syl |
⊢ ( 𝑥 ∈ ℂ → ( ℂ × { ( exp ‘ 𝑥 ) } ) : ℂ ⟶ { ( exp ‘ 𝑥 ) } ) |
27 |
24
|
snssd |
⊢ ( 𝑥 ∈ ℂ → { ( exp ‘ 𝑥 ) } ⊆ ℂ ) |
28 |
26 27
|
fssd |
⊢ ( 𝑥 ∈ ℂ → ( ℂ × { ( exp ‘ 𝑥 ) } ) : ℂ ⟶ ℂ ) |
29 |
|
ssidd |
⊢ ( 𝑥 ∈ ℂ → ℂ ⊆ ℂ ) |
30 |
|
efcl |
⊢ ( ( 𝑧 − 𝑥 ) ∈ ℂ → ( exp ‘ ( 𝑧 − 𝑥 ) ) ∈ ℂ ) |
31 |
4 30
|
syl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑧 − 𝑥 ) ) ∈ ℂ ) |
32 |
31
|
fmpttd |
⊢ ( 𝑥 ∈ ℂ → ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) : ℂ ⟶ ℂ ) |
33 |
|
0cnd |
⊢ ( 𝑥 ∈ ℂ → 0 ∈ ℂ ) |
34 |
|
1cnd |
⊢ ( 𝑥 ∈ ℂ → 1 ∈ ℂ ) |
35 |
|
c0ex |
⊢ 0 ∈ V |
36 |
35
|
snid |
⊢ 0 ∈ { 0 } |
37 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ℂ ∧ 0 ∈ { 0 } ) → 〈 𝑥 , 0 〉 ∈ ( ℂ × { 0 } ) ) |
38 |
36 37
|
mpan2 |
⊢ ( 𝑥 ∈ ℂ → 〈 𝑥 , 0 〉 ∈ ( ℂ × { 0 } ) ) |
39 |
|
dvconst |
⊢ ( ( exp ‘ 𝑥 ) ∈ ℂ → ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) = ( ℂ × { 0 } ) ) |
40 |
24 39
|
syl |
⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) = ( ℂ × { 0 } ) ) |
41 |
38 40
|
eleqtrrd |
⊢ ( 𝑥 ∈ ℂ → 〈 𝑥 , 0 〉 ∈ ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) ) |
42 |
|
df-br |
⊢ ( 𝑥 ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) 0 ↔ 〈 𝑥 , 0 〉 ∈ ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) ) |
43 |
41 42
|
sylibr |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) 0 ) |
44 |
20 4
|
cofmpt |
⊢ ( 𝑥 ∈ ℂ → ( exp ∘ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) |
45 |
44
|
oveq2d |
⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( exp ∘ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) ) = ( ℂ D ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) ) |
46 |
4
|
fmpttd |
⊢ ( 𝑥 ∈ ℂ → ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) : ℂ ⟶ ℂ ) |
47 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 − 𝑥 ) = ( 𝑥 − 𝑥 ) ) |
48 |
|
eqid |
⊢ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) |
49 |
|
ovex |
⊢ ( 𝑥 − 𝑥 ) ∈ V |
50 |
47 48 49
|
fvmpt |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ‘ 𝑥 ) = ( 𝑥 − 𝑥 ) ) |
51 |
|
subid |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 − 𝑥 ) = 0 ) |
52 |
50 51
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ‘ 𝑥 ) = 0 ) |
53 |
|
dveflem |
⊢ 0 ( ℂ D exp ) 1 |
54 |
52 53
|
eqbrtrdi |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ‘ 𝑥 ) ( ℂ D exp ) 1 ) |
55 |
|
1ex |
⊢ 1 ∈ V |
56 |
55
|
snid |
⊢ 1 ∈ { 1 } |
57 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ℂ ∧ 1 ∈ { 1 } ) → 〈 𝑥 , 1 〉 ∈ ( ℂ × { 1 } ) ) |
58 |
56 57
|
mpan2 |
⊢ ( 𝑥 ∈ ℂ → 〈 𝑥 , 1 〉 ∈ ( ℂ × { 1 } ) ) |
59 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
60 |
59
|
a1i |
⊢ ( 𝑥 ∈ ℂ → ℂ ∈ { ℝ , ℂ } ) |
61 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) |
62 |
|
1cnd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 1 ∈ ℂ ) |
63 |
60
|
dvmptid |
⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( 𝑧 ∈ ℂ ↦ 𝑧 ) ) = ( 𝑧 ∈ ℂ ↦ 1 ) ) |
64 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
65 |
|
0cnd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 0 ∈ ℂ ) |
66 |
|
id |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) |
67 |
60 66
|
dvmptc |
⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( 𝑧 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑧 ∈ ℂ ↦ 0 ) ) |
68 |
60 61 62 63 64 65 67
|
dvmptsub |
⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 1 − 0 ) ) ) |
69 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
70 |
69
|
mpteq2i |
⊢ ( 𝑧 ∈ ℂ ↦ ( 1 − 0 ) ) = ( 𝑧 ∈ ℂ ↦ 1 ) |
71 |
|
fconstmpt |
⊢ ( ℂ × { 1 } ) = ( 𝑧 ∈ ℂ ↦ 1 ) |
72 |
70 71
|
eqtr4i |
⊢ ( 𝑧 ∈ ℂ ↦ ( 1 − 0 ) ) = ( ℂ × { 1 } ) |
73 |
68 72
|
eqtrdi |
⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) = ( ℂ × { 1 } ) ) |
74 |
58 73
|
eleqtrrd |
⊢ ( 𝑥 ∈ ℂ → 〈 𝑥 , 1 〉 ∈ ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) ) |
75 |
|
df-br |
⊢ ( 𝑥 ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) 1 ↔ 〈 𝑥 , 1 〉 ∈ ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) ) |
76 |
74 75
|
sylibr |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) 1 ) |
77 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
78 |
20 29 46 29 29 29 34 34 54 76 77
|
dvcobr |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( exp ∘ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) ) ( 1 · 1 ) ) |
79 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
80 |
78 79
|
breqtrdi |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( exp ∘ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) ) 1 ) |
81 |
45 80
|
breqdi |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) 1 ) |
82 |
28 29 32 29 29 33 34 43 81 77
|
dvmulbr |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) ) ( ( 0 · ( ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ‘ 𝑥 ) ) + ( 1 · ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) ) ) ) |
83 |
32 66
|
ffvelrnd |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ‘ 𝑥 ) ∈ ℂ ) |
84 |
83
|
mul02d |
⊢ ( 𝑥 ∈ ℂ → ( 0 · ( ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ‘ 𝑥 ) ) = 0 ) |
85 |
|
fvex |
⊢ ( exp ‘ 𝑥 ) ∈ V |
86 |
85
|
fvconst2 |
⊢ ( 𝑥 ∈ ℂ → ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) |
87 |
86
|
oveq2d |
⊢ ( 𝑥 ∈ ℂ → ( 1 · ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) ) = ( 1 · ( exp ‘ 𝑥 ) ) ) |
88 |
24
|
mulid2d |
⊢ ( 𝑥 ∈ ℂ → ( 1 · ( exp ‘ 𝑥 ) ) = ( exp ‘ 𝑥 ) ) |
89 |
87 88
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( 1 · ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) ) = ( exp ‘ 𝑥 ) ) |
90 |
84 89
|
oveq12d |
⊢ ( 𝑥 ∈ ℂ → ( ( 0 · ( ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ‘ 𝑥 ) ) + ( 1 · ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) ) ) = ( 0 + ( exp ‘ 𝑥 ) ) ) |
91 |
24
|
addid2d |
⊢ ( 𝑥 ∈ ℂ → ( 0 + ( exp ‘ 𝑥 ) ) = ( exp ‘ 𝑥 ) ) |
92 |
90 91
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( ( 0 · ( ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ‘ 𝑥 ) ) + ( 1 · ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) ) ) = ( exp ‘ 𝑥 ) ) |
93 |
82 92
|
breqtrd |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) ) ( exp ‘ 𝑥 ) ) |
94 |
23 93
|
breqdi |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D exp ) ( exp ‘ 𝑥 ) ) |
95 |
|
vex |
⊢ 𝑥 ∈ V |
96 |
95 85
|
breldm |
⊢ ( 𝑥 ( ℂ D exp ) ( exp ‘ 𝑥 ) → 𝑥 ∈ dom ( ℂ D exp ) ) |
97 |
94 96
|
syl |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ dom ( ℂ D exp ) ) |
98 |
97
|
ssriv |
⊢ ℂ ⊆ dom ( ℂ D exp ) |
99 |
2 98
|
eqssi |
⊢ dom ( ℂ D exp ) = ℂ |
100 |
99
|
feq2i |
⊢ ( ( ℂ D exp ) : dom ( ℂ D exp ) ⟶ ℂ ↔ ( ℂ D exp ) : ℂ ⟶ ℂ ) |
101 |
1 100
|
mpbi |
⊢ ( ℂ D exp ) : ℂ ⟶ ℂ |
102 |
101
|
a1i |
⊢ ( ⊤ → ( ℂ D exp ) : ℂ ⟶ ℂ ) |
103 |
102
|
feqmptd |
⊢ ( ⊤ → ( ℂ D exp ) = ( 𝑥 ∈ ℂ ↦ ( ( ℂ D exp ) ‘ 𝑥 ) ) ) |
104 |
|
ffun |
⊢ ( ( ℂ D exp ) : dom ( ℂ D exp ) ⟶ ℂ → Fun ( ℂ D exp ) ) |
105 |
1 104
|
ax-mp |
⊢ Fun ( ℂ D exp ) |
106 |
|
funbrfv |
⊢ ( Fun ( ℂ D exp ) → ( 𝑥 ( ℂ D exp ) ( exp ‘ 𝑥 ) → ( ( ℂ D exp ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) ) |
107 |
105 94 106
|
mpsyl |
⊢ ( 𝑥 ∈ ℂ → ( ( ℂ D exp ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) |
108 |
107
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℂ ↦ ( ( ℂ D exp ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) |
109 |
103 108
|
eqtrdi |
⊢ ( ⊤ → ( ℂ D exp ) = ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) |
110 |
19
|
a1i |
⊢ ( ⊤ → exp : ℂ ⟶ ℂ ) |
111 |
110
|
feqmptd |
⊢ ( ⊤ → exp = ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) |
112 |
109 111
|
eqtr4d |
⊢ ( ⊤ → ( ℂ D exp ) = exp ) |
113 |
112
|
mptru |
⊢ ( ℂ D exp ) = exp |