| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptadd.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
dvmptadd.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 3 |
|
dvmptadd.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) |
| 4 |
|
dvmptadd.da |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 5 |
|
dvmptsub.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
| 6 |
|
dvmptsub.d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ 𝑊 ) |
| 7 |
|
dvmptsub.dc |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) |
| 8 |
5
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → - 𝐶 ∈ ℂ ) |
| 9 |
|
negex |
⊢ - 𝐷 ∈ V |
| 10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → - 𝐷 ∈ V ) |
| 11 |
1 5 6 7
|
dvmptneg |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ - 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ - 𝐷 ) ) |
| 12 |
1 2 3 4 8 10 11
|
dvmptadd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + - 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 + - 𝐷 ) ) ) |
| 13 |
2 5
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 + - 𝐶 ) = ( 𝐴 − 𝐶 ) ) |
| 14 |
13
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + - 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 − 𝐶 ) ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + - 𝐶 ) ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 − 𝐶 ) ) ) ) |
| 16 |
1 2 3 4
|
dvmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 17 |
1 5 6 7
|
dvmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ℂ ) |
| 18 |
16 17
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 + - 𝐷 ) = ( 𝐵 − 𝐷 ) ) |
| 19 |
18
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 + - 𝐷 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 − 𝐷 ) ) ) |
| 20 |
12 15 19
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 − 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 − 𝐷 ) ) ) |