Metamath Proof Explorer


Theorem dvmptsub

Description: Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptadd.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
dvmptadd.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
dvmptadd.b ( ( 𝜑𝑥𝑋 ) → 𝐵𝑉 )
dvmptadd.da ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
dvmptsub.c ( ( 𝜑𝑥𝑋 ) → 𝐶 ∈ ℂ )
dvmptsub.d ( ( 𝜑𝑥𝑋 ) → 𝐷𝑊 )
dvmptsub.dc ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐶 ) ) = ( 𝑥𝑋𝐷 ) )
Assertion dvmptsub ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐴𝐶 ) ) ) = ( 𝑥𝑋 ↦ ( 𝐵𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 dvmptadd.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 dvmptadd.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
3 dvmptadd.b ( ( 𝜑𝑥𝑋 ) → 𝐵𝑉 )
4 dvmptadd.da ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
5 dvmptsub.c ( ( 𝜑𝑥𝑋 ) → 𝐶 ∈ ℂ )
6 dvmptsub.d ( ( 𝜑𝑥𝑋 ) → 𝐷𝑊 )
7 dvmptsub.dc ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐶 ) ) = ( 𝑥𝑋𝐷 ) )
8 5 negcld ( ( 𝜑𝑥𝑋 ) → - 𝐶 ∈ ℂ )
9 negex - 𝐷 ∈ V
10 9 a1i ( ( 𝜑𝑥𝑋 ) → - 𝐷 ∈ V )
11 1 5 6 7 dvmptneg ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ - 𝐶 ) ) = ( 𝑥𝑋 ↦ - 𝐷 ) )
12 1 2 3 4 8 10 11 dvmptadd ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐴 + - 𝐶 ) ) ) = ( 𝑥𝑋 ↦ ( 𝐵 + - 𝐷 ) ) )
13 2 5 negsubd ( ( 𝜑𝑥𝑋 ) → ( 𝐴 + - 𝐶 ) = ( 𝐴𝐶 ) )
14 13 mpteq2dva ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐴 + - 𝐶 ) ) = ( 𝑥𝑋 ↦ ( 𝐴𝐶 ) ) )
15 14 oveq2d ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐴 + - 𝐶 ) ) ) = ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐴𝐶 ) ) ) )
16 1 2 3 4 dvmptcl ( ( 𝜑𝑥𝑋 ) → 𝐵 ∈ ℂ )
17 1 5 6 7 dvmptcl ( ( 𝜑𝑥𝑋 ) → 𝐷 ∈ ℂ )
18 16 17 negsubd ( ( 𝜑𝑥𝑋 ) → ( 𝐵 + - 𝐷 ) = ( 𝐵𝐷 ) )
19 18 mpteq2dva ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐵 + - 𝐷 ) ) = ( 𝑥𝑋 ↦ ( 𝐵𝐷 ) ) )
20 12 15 19 3eqtr3d ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐴𝐶 ) ) ) = ( 𝑥𝑋 ↦ ( 𝐵𝐷 ) ) )