Metamath Proof Explorer


Theorem dvmptcj

Description: Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptcj.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
dvmptcj.b ( ( 𝜑𝑥𝑋 ) → 𝐵𝑉 )
dvmptcj.da ( 𝜑 → ( ℝ D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
Assertion dvmptcj ( 𝜑 → ( ℝ D ( 𝑥𝑋 ↦ ( ∗ ‘ 𝐴 ) ) ) = ( 𝑥𝑋 ↦ ( ∗ ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 dvmptcj.a ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
2 dvmptcj.b ( ( 𝜑𝑥𝑋 ) → 𝐵𝑉 )
3 dvmptcj.da ( 𝜑 → ( ℝ D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
4 1 fmpttd ( 𝜑 → ( 𝑥𝑋𝐴 ) : 𝑋 ⟶ ℂ )
5 3 dmeqd ( 𝜑 → dom ( ℝ D ( 𝑥𝑋𝐴 ) ) = dom ( 𝑥𝑋𝐵 ) )
6 2 ralrimiva ( 𝜑 → ∀ 𝑥𝑋 𝐵𝑉 )
7 dmmptg ( ∀ 𝑥𝑋 𝐵𝑉 → dom ( 𝑥𝑋𝐵 ) = 𝑋 )
8 6 7 syl ( 𝜑 → dom ( 𝑥𝑋𝐵 ) = 𝑋 )
9 5 8 eqtrd ( 𝜑 → dom ( ℝ D ( 𝑥𝑋𝐴 ) ) = 𝑋 )
10 dvbsss dom ( ℝ D ( 𝑥𝑋𝐴 ) ) ⊆ ℝ
11 9 10 eqsstrrdi ( 𝜑𝑋 ⊆ ℝ )
12 dvcj ( ( ( 𝑥𝑋𝐴 ) : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ ( 𝑥𝑋𝐴 ) ) ) = ( ∗ ∘ ( ℝ D ( 𝑥𝑋𝐴 ) ) ) )
13 4 11 12 syl2anc ( 𝜑 → ( ℝ D ( ∗ ∘ ( 𝑥𝑋𝐴 ) ) ) = ( ∗ ∘ ( ℝ D ( 𝑥𝑋𝐴 ) ) ) )
14 cjf ∗ : ℂ ⟶ ℂ
15 14 a1i ( 𝜑 → ∗ : ℂ ⟶ ℂ )
16 15 1 cofmpt ( 𝜑 → ( ∗ ∘ ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋 ↦ ( ∗ ‘ 𝐴 ) ) )
17 16 oveq2d ( 𝜑 → ( ℝ D ( ∗ ∘ ( 𝑥𝑋𝐴 ) ) ) = ( ℝ D ( 𝑥𝑋 ↦ ( ∗ ‘ 𝐴 ) ) ) )
18 reelprrecn ℝ ∈ { ℝ , ℂ }
19 18 a1i ( 𝜑 → ℝ ∈ { ℝ , ℂ } )
20 19 1 2 3 dvmptcl ( ( 𝜑𝑥𝑋 ) → 𝐵 ∈ ℂ )
21 15 feqmptd ( 𝜑 → ∗ = ( 𝑦 ∈ ℂ ↦ ( ∗ ‘ 𝑦 ) ) )
22 fveq2 ( 𝑦 = 𝐵 → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ 𝐵 ) )
23 20 3 21 22 fmptco ( 𝜑 → ( ∗ ∘ ( ℝ D ( 𝑥𝑋𝐴 ) ) ) = ( 𝑥𝑋 ↦ ( ∗ ‘ 𝐵 ) ) )
24 13 17 23 3eqtr3d ( 𝜑 → ( ℝ D ( 𝑥𝑋 ↦ ( ∗ ‘ 𝐴 ) ) ) = ( 𝑥𝑋 ↦ ( ∗ ‘ 𝐵 ) ) )