Metamath Proof Explorer


Theorem dvmptcj

Description: Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptcj.a φxXA
dvmptcj.b φxXBV
dvmptcj.da φdxXAdx=xXB
Assertion dvmptcj φdxXAdx=xXB

Proof

Step Hyp Ref Expression
1 dvmptcj.a φxXA
2 dvmptcj.b φxXBV
3 dvmptcj.da φdxXAdx=xXB
4 1 fmpttd φxXA:X
5 3 dmeqd φdomdxXAdx=domxXB
6 2 ralrimiva φxXBV
7 dmmptg xXBVdomxXB=X
8 6 7 syl φdomxXB=X
9 5 8 eqtrd φdomdxXAdx=X
10 dvbsss domdxXAdx
11 9 10 eqsstrrdi φX
12 dvcj xXA:XXD*xXA=*dxXAdx
13 4 11 12 syl2anc φD*xXA=*dxXAdx
14 cjf *:
15 14 a1i φ*:
16 15 1 cofmpt φ*xXA=xXA
17 16 oveq2d φD*xXA=dxXAdx
18 reelprrecn
19 18 a1i φ
20 19 1 2 3 dvmptcl φxXB
21 15 feqmptd φ*=yy
22 fveq2 y=By=B
23 20 3 21 22 fmptco φ*dxXAdx=xXB
24 13 17 23 3eqtr3d φdxXAdx=xXB