| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvf |
|
| 2 |
|
ffun |
|
| 3 |
1 2
|
ax-mp |
|
| 4 |
|
simpll |
|
| 5 |
|
simplr |
|
| 6 |
|
simpr |
|
| 7 |
4 5 6
|
dvcjbr |
|
| 8 |
|
funbrfv |
|
| 9 |
3 7 8
|
mpsyl |
|
| 10 |
9
|
mpteq2dva |
|
| 11 |
|
cjf |
|
| 12 |
|
fco |
|
| 13 |
11 12
|
mpan |
|
| 14 |
13
|
ad2antrr |
|
| 15 |
|
simplr |
|
| 16 |
|
simpr |
|
| 17 |
14 15 16
|
dvcjbr |
|
| 18 |
|
vex |
|
| 19 |
|
fvex |
|
| 20 |
18 19
|
breldm |
|
| 21 |
17 20
|
syl |
|
| 22 |
21
|
ex |
|
| 23 |
22
|
ssrdv |
|
| 24 |
|
ffvelcdm |
|
| 25 |
24
|
adantlr |
|
| 26 |
25
|
cjcjd |
|
| 27 |
26
|
mpteq2dva |
|
| 28 |
25
|
cjcld |
|
| 29 |
|
simpl |
|
| 30 |
29
|
feqmptd |
|
| 31 |
11
|
a1i |
|
| 32 |
31
|
feqmptd |
|
| 33 |
|
fveq2 |
|
| 34 |
25 30 32 33
|
fmptco |
|
| 35 |
|
fveq2 |
|
| 36 |
28 34 32 35
|
fmptco |
|
| 37 |
27 36 30
|
3eqtr4d |
|
| 38 |
37
|
oveq2d |
|
| 39 |
38
|
dmeqd |
|
| 40 |
23 39
|
sseqtrd |
|
| 41 |
|
fvex |
|
| 42 |
18 41
|
breldm |
|
| 43 |
7 42
|
syl |
|
| 44 |
40 43
|
eqelssd |
|
| 45 |
44
|
feq2d |
|
| 46 |
1 45
|
mpbii |
|
| 47 |
46
|
feqmptd |
|
| 48 |
|
dvf |
|
| 49 |
48
|
ffvelcdmi |
|
| 50 |
49
|
adantl |
|
| 51 |
48
|
a1i |
|
| 52 |
51
|
feqmptd |
|
| 53 |
|
fveq2 |
|
| 54 |
50 52 32 53
|
fmptco |
|
| 55 |
10 47 54
|
3eqtr4d |
|