| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvf |
|- ( RR _D ( * o. F ) ) : dom ( RR _D ( * o. F ) ) --> CC |
| 2 |
|
ffun |
|- ( ( RR _D ( * o. F ) ) : dom ( RR _D ( * o. F ) ) --> CC -> Fun ( RR _D ( * o. F ) ) ) |
| 3 |
1 2
|
ax-mp |
|- Fun ( RR _D ( * o. F ) ) |
| 4 |
|
simpll |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> F : X --> CC ) |
| 5 |
|
simplr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> X C_ RR ) |
| 6 |
|
simpr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> x e. dom ( RR _D F ) ) |
| 7 |
4 5 6
|
dvcjbr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> x ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` x ) ) ) |
| 8 |
|
funbrfv |
|- ( Fun ( RR _D ( * o. F ) ) -> ( x ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` x ) ) -> ( ( RR _D ( * o. F ) ) ` x ) = ( * ` ( ( RR _D F ) ` x ) ) ) ) |
| 9 |
3 7 8
|
mpsyl |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( ( RR _D ( * o. F ) ) ` x ) = ( * ` ( ( RR _D F ) ` x ) ) ) |
| 10 |
9
|
mpteq2dva |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( x e. dom ( RR _D F ) |-> ( ( RR _D ( * o. F ) ) ` x ) ) = ( x e. dom ( RR _D F ) |-> ( * ` ( ( RR _D F ) ` x ) ) ) ) |
| 11 |
|
cjf |
|- * : CC --> CC |
| 12 |
|
fco |
|- ( ( * : CC --> CC /\ F : X --> CC ) -> ( * o. F ) : X --> CC ) |
| 13 |
11 12
|
mpan |
|- ( F : X --> CC -> ( * o. F ) : X --> CC ) |
| 14 |
13
|
ad2antrr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D ( * o. F ) ) ) -> ( * o. F ) : X --> CC ) |
| 15 |
|
simplr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D ( * o. F ) ) ) -> X C_ RR ) |
| 16 |
|
simpr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D ( * o. F ) ) ) -> x e. dom ( RR _D ( * o. F ) ) ) |
| 17 |
14 15 16
|
dvcjbr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D ( * o. F ) ) ) -> x ( RR _D ( * o. ( * o. F ) ) ) ( * ` ( ( RR _D ( * o. F ) ) ` x ) ) ) |
| 18 |
|
vex |
|- x e. _V |
| 19 |
|
fvex |
|- ( * ` ( ( RR _D ( * o. F ) ) ` x ) ) e. _V |
| 20 |
18 19
|
breldm |
|- ( x ( RR _D ( * o. ( * o. F ) ) ) ( * ` ( ( RR _D ( * o. F ) ) ` x ) ) -> x e. dom ( RR _D ( * o. ( * o. F ) ) ) ) |
| 21 |
17 20
|
syl |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D ( * o. F ) ) ) -> x e. dom ( RR _D ( * o. ( * o. F ) ) ) ) |
| 22 |
21
|
ex |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( x e. dom ( RR _D ( * o. F ) ) -> x e. dom ( RR _D ( * o. ( * o. F ) ) ) ) ) |
| 23 |
22
|
ssrdv |
|- ( ( F : X --> CC /\ X C_ RR ) -> dom ( RR _D ( * o. F ) ) C_ dom ( RR _D ( * o. ( * o. F ) ) ) ) |
| 24 |
|
ffvelcdm |
|- ( ( F : X --> CC /\ x e. X ) -> ( F ` x ) e. CC ) |
| 25 |
24
|
adantlr |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. X ) -> ( F ` x ) e. CC ) |
| 26 |
25
|
cjcjd |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. X ) -> ( * ` ( * ` ( F ` x ) ) ) = ( F ` x ) ) |
| 27 |
26
|
mpteq2dva |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( x e. X |-> ( * ` ( * ` ( F ` x ) ) ) ) = ( x e. X |-> ( F ` x ) ) ) |
| 28 |
25
|
cjcld |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. X ) -> ( * ` ( F ` x ) ) e. CC ) |
| 29 |
|
simpl |
|- ( ( F : X --> CC /\ X C_ RR ) -> F : X --> CC ) |
| 30 |
29
|
feqmptd |
|- ( ( F : X --> CC /\ X C_ RR ) -> F = ( x e. X |-> ( F ` x ) ) ) |
| 31 |
11
|
a1i |
|- ( ( F : X --> CC /\ X C_ RR ) -> * : CC --> CC ) |
| 32 |
31
|
feqmptd |
|- ( ( F : X --> CC /\ X C_ RR ) -> * = ( y e. CC |-> ( * ` y ) ) ) |
| 33 |
|
fveq2 |
|- ( y = ( F ` x ) -> ( * ` y ) = ( * ` ( F ` x ) ) ) |
| 34 |
25 30 32 33
|
fmptco |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( * o. F ) = ( x e. X |-> ( * ` ( F ` x ) ) ) ) |
| 35 |
|
fveq2 |
|- ( y = ( * ` ( F ` x ) ) -> ( * ` y ) = ( * ` ( * ` ( F ` x ) ) ) ) |
| 36 |
28 34 32 35
|
fmptco |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( * o. ( * o. F ) ) = ( x e. X |-> ( * ` ( * ` ( F ` x ) ) ) ) ) |
| 37 |
27 36 30
|
3eqtr4d |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( * o. ( * o. F ) ) = F ) |
| 38 |
37
|
oveq2d |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. ( * o. F ) ) ) = ( RR _D F ) ) |
| 39 |
38
|
dmeqd |
|- ( ( F : X --> CC /\ X C_ RR ) -> dom ( RR _D ( * o. ( * o. F ) ) ) = dom ( RR _D F ) ) |
| 40 |
23 39
|
sseqtrd |
|- ( ( F : X --> CC /\ X C_ RR ) -> dom ( RR _D ( * o. F ) ) C_ dom ( RR _D F ) ) |
| 41 |
|
fvex |
|- ( * ` ( ( RR _D F ) ` x ) ) e. _V |
| 42 |
18 41
|
breldm |
|- ( x ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` x ) ) -> x e. dom ( RR _D ( * o. F ) ) ) |
| 43 |
7 42
|
syl |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> x e. dom ( RR _D ( * o. F ) ) ) |
| 44 |
40 43
|
eqelssd |
|- ( ( F : X --> CC /\ X C_ RR ) -> dom ( RR _D ( * o. F ) ) = dom ( RR _D F ) ) |
| 45 |
44
|
feq2d |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( ( RR _D ( * o. F ) ) : dom ( RR _D ( * o. F ) ) --> CC <-> ( RR _D ( * o. F ) ) : dom ( RR _D F ) --> CC ) ) |
| 46 |
1 45
|
mpbii |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. F ) ) : dom ( RR _D F ) --> CC ) |
| 47 |
46
|
feqmptd |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. F ) ) = ( x e. dom ( RR _D F ) |-> ( ( RR _D ( * o. F ) ) ` x ) ) ) |
| 48 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
| 49 |
48
|
ffvelcdmi |
|- ( x e. dom ( RR _D F ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 50 |
49
|
adantl |
|- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 51 |
48
|
a1i |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> CC ) |
| 52 |
51
|
feqmptd |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D F ) = ( x e. dom ( RR _D F ) |-> ( ( RR _D F ) ` x ) ) ) |
| 53 |
|
fveq2 |
|- ( y = ( ( RR _D F ) ` x ) -> ( * ` y ) = ( * ` ( ( RR _D F ) ` x ) ) ) |
| 54 |
50 52 32 53
|
fmptco |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( * o. ( RR _D F ) ) = ( x e. dom ( RR _D F ) |-> ( * ` ( ( RR _D F ) ` x ) ) ) ) |
| 55 |
10 47 54
|
3eqtr4d |
|- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. F ) ) = ( * o. ( RR _D F ) ) ) |