| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvf |
⊢ ( ℝ D ( ∗ ∘ 𝐹 ) ) : dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ⟶ ℂ |
| 2 |
|
ffun |
⊢ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) : dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ⟶ ℂ → Fun ( ℝ D ( ∗ ∘ 𝐹 ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ Fun ( ℝ D ( ∗ ∘ 𝐹 ) ) |
| 4 |
|
simpll |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝐹 : 𝑋 ⟶ ℂ ) |
| 5 |
|
simplr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝑋 ⊆ ℝ ) |
| 6 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝑥 ∈ dom ( ℝ D 𝐹 ) ) |
| 7 |
4 5 6
|
dvcjbr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝑥 ( ℝ D ( ∗ ∘ 𝐹 ) ) ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 8 |
|
funbrfv |
⊢ ( Fun ( ℝ D ( ∗ ∘ 𝐹 ) ) → ( 𝑥 ( ℝ D ( ∗ ∘ 𝐹 ) ) ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) → ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) = ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 9 |
3 7 8
|
mpsyl |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) = ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 10 |
9
|
mpteq2dva |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↦ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↦ ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 11 |
|
cjf |
⊢ ∗ : ℂ ⟶ ℂ |
| 12 |
|
fco |
⊢ ( ( ∗ : ℂ ⟶ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ) → ( ∗ ∘ 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 13 |
11 12
|
mpan |
⊢ ( 𝐹 : 𝑋 ⟶ ℂ → ( ∗ ∘ 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 14 |
13
|
ad2antrr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) → ( ∗ ∘ 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 15 |
|
simplr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) → 𝑋 ⊆ ℝ ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) |
| 17 |
14 15 16
|
dvcjbr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) → 𝑥 ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ( ∗ ‘ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) ) ) |
| 18 |
|
vex |
⊢ 𝑥 ∈ V |
| 19 |
|
fvex |
⊢ ( ∗ ‘ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) ) ∈ V |
| 20 |
18 19
|
breldm |
⊢ ( 𝑥 ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ( ∗ ‘ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ) |
| 21 |
17 20
|
syl |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ) |
| 22 |
21
|
ex |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ) ) |
| 23 |
22
|
ssrdv |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ⊆ dom ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ) |
| 24 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 25 |
24
|
adantlr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 26 |
25
|
cjcjd |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∗ ‘ ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 27 |
26
|
mpteq2dva |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 28 |
25
|
cjcld |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 29 |
|
simpl |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → 𝐹 : 𝑋 ⟶ ℂ ) |
| 30 |
29
|
feqmptd |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 31 |
11
|
a1i |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ∗ : ℂ ⟶ ℂ ) |
| 32 |
31
|
feqmptd |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ∗ = ( 𝑦 ∈ ℂ ↦ ( ∗ ‘ 𝑦 ) ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 34 |
25 30 32 33
|
fmptco |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ∗ ∘ 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑦 = ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 36 |
28 34 32 35
|
fmptco |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 37 |
27 36 30
|
3eqtr4d |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) = 𝐹 ) |
| 38 |
37
|
oveq2d |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) = ( ℝ D 𝐹 ) ) |
| 39 |
38
|
dmeqd |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → dom ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) = dom ( ℝ D 𝐹 ) ) |
| 40 |
23 39
|
sseqtrd |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 41 |
|
fvex |
⊢ ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ V |
| 42 |
18 41
|
breldm |
⊢ ( 𝑥 ( ℝ D ( ∗ ∘ 𝐹 ) ) ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) |
| 43 |
7 42
|
syl |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) |
| 44 |
40 43
|
eqelssd |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → dom ( ℝ D ( ∗ ∘ 𝐹 ) ) = dom ( ℝ D 𝐹 ) ) |
| 45 |
44
|
feq2d |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ( ℝ D ( ∗ ∘ 𝐹 ) ) : dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ⟶ ℂ ↔ ( ℝ D ( ∗ ∘ 𝐹 ) ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ) ) |
| 46 |
1 45
|
mpbii |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ) |
| 47 |
46
|
feqmptd |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) = ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↦ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) ) ) |
| 48 |
|
dvf |
⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ |
| 49 |
48
|
ffvelcdmi |
⊢ ( 𝑥 ∈ dom ( ℝ D 𝐹 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 50 |
49
|
adantl |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 51 |
48
|
a1i |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ) |
| 52 |
51
|
feqmptd |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D 𝐹 ) = ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 53 |
|
fveq2 |
⊢ ( 𝑦 = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 54 |
50 52 32 53
|
fmptco |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ∗ ∘ ( ℝ D 𝐹 ) ) = ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↦ ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 55 |
10 47 54
|
3eqtr4d |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) = ( ∗ ∘ ( ℝ D 𝐹 ) ) ) |