| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcj.f |
|- ( ph -> F : X --> CC ) |
| 2 |
|
dvcj.x |
|- ( ph -> X C_ RR ) |
| 3 |
|
dvcj.c |
|- ( ph -> C e. dom ( RR _D F ) ) |
| 4 |
|
ax-resscn |
|- RR C_ CC |
| 5 |
4
|
a1i |
|- ( ph -> RR C_ CC ) |
| 6 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 7 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 8 |
5 1 2 6 7
|
dvbssntr |
|- ( ph -> dom ( RR _D F ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` X ) ) |
| 9 |
8 3
|
sseldd |
|- ( ph -> C e. ( ( int ` ( topGen ` ran (,) ) ) ` X ) ) |
| 10 |
2 4
|
sstrdi |
|- ( ph -> X C_ CC ) |
| 11 |
4
|
a1i |
|- ( ( F : X --> CC /\ X C_ RR ) -> RR C_ CC ) |
| 12 |
|
simpl |
|- ( ( F : X --> CC /\ X C_ RR ) -> F : X --> CC ) |
| 13 |
|
simpr |
|- ( ( F : X --> CC /\ X C_ RR ) -> X C_ RR ) |
| 14 |
11 12 13
|
dvbss |
|- ( ( F : X --> CC /\ X C_ RR ) -> dom ( RR _D F ) C_ X ) |
| 15 |
1 2 14
|
syl2anc |
|- ( ph -> dom ( RR _D F ) C_ X ) |
| 16 |
15 3
|
sseldd |
|- ( ph -> C e. X ) |
| 17 |
1 10 16
|
dvlem |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) e. CC ) |
| 18 |
17
|
fmpttd |
|- ( ph -> ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) : ( X \ { C } ) --> CC ) |
| 19 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
| 20 |
7
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 21 |
20
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 22 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
| 23 |
|
ffun |
|- ( ( RR _D F ) : dom ( RR _D F ) --> CC -> Fun ( RR _D F ) ) |
| 24 |
|
funfvbrb |
|- ( Fun ( RR _D F ) -> ( C e. dom ( RR _D F ) <-> C ( RR _D F ) ( ( RR _D F ) ` C ) ) ) |
| 25 |
22 23 24
|
mp2b |
|- ( C e. dom ( RR _D F ) <-> C ( RR _D F ) ( ( RR _D F ) ` C ) ) |
| 26 |
3 25
|
sylib |
|- ( ph -> C ( RR _D F ) ( ( RR _D F ) ` C ) ) |
| 27 |
|
eqid |
|- ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) = ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) |
| 28 |
6 7 27 5 1 2
|
eldv |
|- ( ph -> ( C ( RR _D F ) ( ( RR _D F ) ` C ) <-> ( C e. ( ( int ` ( topGen ` ran (,) ) ) ` X ) /\ ( ( RR _D F ) ` C ) e. ( ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) limCC C ) ) ) ) |
| 29 |
26 28
|
mpbid |
|- ( ph -> ( C e. ( ( int ` ( topGen ` ran (,) ) ) ` X ) /\ ( ( RR _D F ) ` C ) e. ( ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) limCC C ) ) ) |
| 30 |
29
|
simprd |
|- ( ph -> ( ( RR _D F ) ` C ) e. ( ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) limCC C ) ) |
| 31 |
|
cjcncf |
|- * e. ( CC -cn-> CC ) |
| 32 |
7
|
cncfcn1 |
|- ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
| 33 |
31 32
|
eleqtri |
|- * e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
| 34 |
22
|
ffvelcdmi |
|- ( C e. dom ( RR _D F ) -> ( ( RR _D F ) ` C ) e. CC ) |
| 35 |
3 34
|
syl |
|- ( ph -> ( ( RR _D F ) ` C ) e. CC ) |
| 36 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
| 37 |
36
|
cncnpi |
|- ( ( * e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ ( ( RR _D F ) ` C ) e. CC ) -> * e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( RR _D F ) ` C ) ) ) |
| 38 |
33 35 37
|
sylancr |
|- ( ph -> * e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( RR _D F ) ` C ) ) ) |
| 39 |
18 19 7 21 30 38
|
limccnp |
|- ( ph -> ( * ` ( ( RR _D F ) ` C ) ) e. ( ( * o. ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) limCC C ) ) |
| 40 |
|
cjf |
|- * : CC --> CC |
| 41 |
40
|
a1i |
|- ( ph -> * : CC --> CC ) |
| 42 |
41 17
|
cofmpt |
|- ( ph -> ( * o. ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) = ( x e. ( X \ { C } ) |-> ( * ` ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) ) |
| 43 |
1
|
adantr |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> F : X --> CC ) |
| 44 |
|
eldifi |
|- ( x e. ( X \ { C } ) -> x e. X ) |
| 45 |
44
|
adantl |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> x e. X ) |
| 46 |
43 45
|
ffvelcdmd |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( F ` x ) e. CC ) |
| 47 |
1 16
|
ffvelcdmd |
|- ( ph -> ( F ` C ) e. CC ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( F ` C ) e. CC ) |
| 49 |
46 48
|
subcld |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( F ` x ) - ( F ` C ) ) e. CC ) |
| 50 |
2
|
sselda |
|- ( ( ph /\ x e. X ) -> x e. RR ) |
| 51 |
44 50
|
sylan2 |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> x e. RR ) |
| 52 |
2 16
|
sseldd |
|- ( ph -> C e. RR ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> C e. RR ) |
| 54 |
51 53
|
resubcld |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( x - C ) e. RR ) |
| 55 |
54
|
recnd |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( x - C ) e. CC ) |
| 56 |
51
|
recnd |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> x e. CC ) |
| 57 |
53
|
recnd |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> C e. CC ) |
| 58 |
|
eldifsni |
|- ( x e. ( X \ { C } ) -> x =/= C ) |
| 59 |
58
|
adantl |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> x =/= C ) |
| 60 |
56 57 59
|
subne0d |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( x - C ) =/= 0 ) |
| 61 |
49 55 60
|
cjdivd |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( * ` ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) = ( ( * ` ( ( F ` x ) - ( F ` C ) ) ) / ( * ` ( x - C ) ) ) ) |
| 62 |
|
cjsub |
|- ( ( ( F ` x ) e. CC /\ ( F ` C ) e. CC ) -> ( * ` ( ( F ` x ) - ( F ` C ) ) ) = ( ( * ` ( F ` x ) ) - ( * ` ( F ` C ) ) ) ) |
| 63 |
46 48 62
|
syl2anc |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( * ` ( ( F ` x ) - ( F ` C ) ) ) = ( ( * ` ( F ` x ) ) - ( * ` ( F ` C ) ) ) ) |
| 64 |
|
fvco3 |
|- ( ( F : X --> CC /\ x e. X ) -> ( ( * o. F ) ` x ) = ( * ` ( F ` x ) ) ) |
| 65 |
1 44 64
|
syl2an |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( * o. F ) ` x ) = ( * ` ( F ` x ) ) ) |
| 66 |
|
fvco3 |
|- ( ( F : X --> CC /\ C e. X ) -> ( ( * o. F ) ` C ) = ( * ` ( F ` C ) ) ) |
| 67 |
1 16 66
|
syl2anc |
|- ( ph -> ( ( * o. F ) ` C ) = ( * ` ( F ` C ) ) ) |
| 68 |
67
|
adantr |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( * o. F ) ` C ) = ( * ` ( F ` C ) ) ) |
| 69 |
65 68
|
oveq12d |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) = ( ( * ` ( F ` x ) ) - ( * ` ( F ` C ) ) ) ) |
| 70 |
63 69
|
eqtr4d |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( * ` ( ( F ` x ) - ( F ` C ) ) ) = ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) ) |
| 71 |
54
|
cjred |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( * ` ( x - C ) ) = ( x - C ) ) |
| 72 |
70 71
|
oveq12d |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( * ` ( ( F ` x ) - ( F ` C ) ) ) / ( * ` ( x - C ) ) ) = ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) |
| 73 |
61 72
|
eqtrd |
|- ( ( ph /\ x e. ( X \ { C } ) ) -> ( * ` ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) = ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) |
| 74 |
73
|
mpteq2dva |
|- ( ph -> ( x e. ( X \ { C } ) |-> ( * ` ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) = ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) ) |
| 75 |
42 74
|
eqtrd |
|- ( ph -> ( * o. ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) = ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) ) |
| 76 |
75
|
oveq1d |
|- ( ph -> ( ( * o. ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) limCC C ) = ( ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) limCC C ) ) |
| 77 |
39 76
|
eleqtrd |
|- ( ph -> ( * ` ( ( RR _D F ) ` C ) ) e. ( ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) limCC C ) ) |
| 78 |
|
eqid |
|- ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) = ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) |
| 79 |
|
fco |
|- ( ( * : CC --> CC /\ F : X --> CC ) -> ( * o. F ) : X --> CC ) |
| 80 |
40 1 79
|
sylancr |
|- ( ph -> ( * o. F ) : X --> CC ) |
| 81 |
6 7 78 5 80 2
|
eldv |
|- ( ph -> ( C ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` C ) ) <-> ( C e. ( ( int ` ( topGen ` ran (,) ) ) ` X ) /\ ( * ` ( ( RR _D F ) ` C ) ) e. ( ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) limCC C ) ) ) ) |
| 82 |
9 77 81
|
mpbir2and |
|- ( ph -> C ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` C ) ) ) |