Metamath Proof Explorer


Theorem dvfre

Description: The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014)

Ref Expression
Assertion dvfre F:AAF:domF

Proof

Step Hyp Ref Expression
1 dvf F:domF
2 ffn F:domFFFndomF
3 1 2 mp1i F:AAFFndomF
4 1 ffvelcdmi xdomFFx
5 4 adantl F:AAxdomFFx
6 simpr F:AAxdomFxdomF
7 fvco3 F:domFxdomF*Fx=Fx
8 1 6 7 sylancr F:AAxdomF*Fx=Fx
9 ax-resscn
10 fss F:AF:A
11 9 10 mpan2 F:AF:A
12 dvcj F:AAD*F=*F
13 11 12 sylan F:AAD*F=*F
14 ffvelcdm F:AyAFy
15 14 adantlr F:AAyAFy
16 15 cjred F:AAyAFy=Fy
17 16 mpteq2dva F:AAyAFy=yAFy
18 15 recnd F:AAyAFy
19 simpl F:AAF:A
20 19 feqmptd F:AAF=yAFy
21 cjf *:
22 21 a1i F:AA*:
23 22 feqmptd F:AA*=zz
24 fveq2 z=Fyz=Fy
25 18 20 23 24 fmptco F:AA*F=yAFy
26 17 25 20 3eqtr4d F:AA*F=F
27 26 oveq2d F:AAD*F=DF
28 13 27 eqtr3d F:AA*F=DF
29 28 fveq1d F:AA*Fx=Fx
30 29 adantr F:AAxdomF*Fx=Fx
31 8 30 eqtr3d F:AAxdomFFx=Fx
32 5 31 cjrebd F:AAxdomFFx
33 32 ralrimiva F:AAxdomFFx
34 ffnfv F:domFFFndomFxdomFFx
35 3 33 34 sylanbrc F:AAF:domF