Step |
Hyp |
Ref |
Expression |
1 |
|
dvfcn |
|- ( CC _D exp ) : dom ( CC _D exp ) --> CC |
2 |
|
dvbsss |
|- dom ( CC _D exp ) C_ CC |
3 |
|
subcl |
|- ( ( z e. CC /\ x e. CC ) -> ( z - x ) e. CC ) |
4 |
3
|
ancoms |
|- ( ( x e. CC /\ z e. CC ) -> ( z - x ) e. CC ) |
5 |
|
efadd |
|- ( ( x e. CC /\ ( z - x ) e. CC ) -> ( exp ` ( x + ( z - x ) ) ) = ( ( exp ` x ) x. ( exp ` ( z - x ) ) ) ) |
6 |
4 5
|
syldan |
|- ( ( x e. CC /\ z e. CC ) -> ( exp ` ( x + ( z - x ) ) ) = ( ( exp ` x ) x. ( exp ` ( z - x ) ) ) ) |
7 |
|
pncan3 |
|- ( ( x e. CC /\ z e. CC ) -> ( x + ( z - x ) ) = z ) |
8 |
7
|
fveq2d |
|- ( ( x e. CC /\ z e. CC ) -> ( exp ` ( x + ( z - x ) ) ) = ( exp ` z ) ) |
9 |
6 8
|
eqtr3d |
|- ( ( x e. CC /\ z e. CC ) -> ( ( exp ` x ) x. ( exp ` ( z - x ) ) ) = ( exp ` z ) ) |
10 |
9
|
mpteq2dva |
|- ( x e. CC -> ( z e. CC |-> ( ( exp ` x ) x. ( exp ` ( z - x ) ) ) ) = ( z e. CC |-> ( exp ` z ) ) ) |
11 |
|
cnex |
|- CC e. _V |
12 |
11
|
a1i |
|- ( x e. CC -> CC e. _V ) |
13 |
|
fvexd |
|- ( ( x e. CC /\ z e. CC ) -> ( exp ` x ) e. _V ) |
14 |
|
fvexd |
|- ( ( x e. CC /\ z e. CC ) -> ( exp ` ( z - x ) ) e. _V ) |
15 |
|
fconstmpt |
|- ( CC X. { ( exp ` x ) } ) = ( z e. CC |-> ( exp ` x ) ) |
16 |
15
|
a1i |
|- ( x e. CC -> ( CC X. { ( exp ` x ) } ) = ( z e. CC |-> ( exp ` x ) ) ) |
17 |
|
eqidd |
|- ( x e. CC -> ( z e. CC |-> ( exp ` ( z - x ) ) ) = ( z e. CC |-> ( exp ` ( z - x ) ) ) ) |
18 |
12 13 14 16 17
|
offval2 |
|- ( x e. CC -> ( ( CC X. { ( exp ` x ) } ) oF x. ( z e. CC |-> ( exp ` ( z - x ) ) ) ) = ( z e. CC |-> ( ( exp ` x ) x. ( exp ` ( z - x ) ) ) ) ) |
19 |
|
eff |
|- exp : CC --> CC |
20 |
19
|
a1i |
|- ( x e. CC -> exp : CC --> CC ) |
21 |
20
|
feqmptd |
|- ( x e. CC -> exp = ( z e. CC |-> ( exp ` z ) ) ) |
22 |
10 18 21
|
3eqtr4d |
|- ( x e. CC -> ( ( CC X. { ( exp ` x ) } ) oF x. ( z e. CC |-> ( exp ` ( z - x ) ) ) ) = exp ) |
23 |
22
|
oveq2d |
|- ( x e. CC -> ( CC _D ( ( CC X. { ( exp ` x ) } ) oF x. ( z e. CC |-> ( exp ` ( z - x ) ) ) ) ) = ( CC _D exp ) ) |
24 |
|
efcl |
|- ( x e. CC -> ( exp ` x ) e. CC ) |
25 |
|
fconstg |
|- ( ( exp ` x ) e. CC -> ( CC X. { ( exp ` x ) } ) : CC --> { ( exp ` x ) } ) |
26 |
24 25
|
syl |
|- ( x e. CC -> ( CC X. { ( exp ` x ) } ) : CC --> { ( exp ` x ) } ) |
27 |
24
|
snssd |
|- ( x e. CC -> { ( exp ` x ) } C_ CC ) |
28 |
26 27
|
fssd |
|- ( x e. CC -> ( CC X. { ( exp ` x ) } ) : CC --> CC ) |
29 |
|
ssidd |
|- ( x e. CC -> CC C_ CC ) |
30 |
|
efcl |
|- ( ( z - x ) e. CC -> ( exp ` ( z - x ) ) e. CC ) |
31 |
4 30
|
syl |
|- ( ( x e. CC /\ z e. CC ) -> ( exp ` ( z - x ) ) e. CC ) |
32 |
31
|
fmpttd |
|- ( x e. CC -> ( z e. CC |-> ( exp ` ( z - x ) ) ) : CC --> CC ) |
33 |
|
0cnd |
|- ( x e. CC -> 0 e. CC ) |
34 |
|
1cnd |
|- ( x e. CC -> 1 e. CC ) |
35 |
|
c0ex |
|- 0 e. _V |
36 |
35
|
snid |
|- 0 e. { 0 } |
37 |
|
opelxpi |
|- ( ( x e. CC /\ 0 e. { 0 } ) -> <. x , 0 >. e. ( CC X. { 0 } ) ) |
38 |
36 37
|
mpan2 |
|- ( x e. CC -> <. x , 0 >. e. ( CC X. { 0 } ) ) |
39 |
|
dvconst |
|- ( ( exp ` x ) e. CC -> ( CC _D ( CC X. { ( exp ` x ) } ) ) = ( CC X. { 0 } ) ) |
40 |
24 39
|
syl |
|- ( x e. CC -> ( CC _D ( CC X. { ( exp ` x ) } ) ) = ( CC X. { 0 } ) ) |
41 |
38 40
|
eleqtrrd |
|- ( x e. CC -> <. x , 0 >. e. ( CC _D ( CC X. { ( exp ` x ) } ) ) ) |
42 |
|
df-br |
|- ( x ( CC _D ( CC X. { ( exp ` x ) } ) ) 0 <-> <. x , 0 >. e. ( CC _D ( CC X. { ( exp ` x ) } ) ) ) |
43 |
41 42
|
sylibr |
|- ( x e. CC -> x ( CC _D ( CC X. { ( exp ` x ) } ) ) 0 ) |
44 |
20 4
|
cofmpt |
|- ( x e. CC -> ( exp o. ( z e. CC |-> ( z - x ) ) ) = ( z e. CC |-> ( exp ` ( z - x ) ) ) ) |
45 |
44
|
oveq2d |
|- ( x e. CC -> ( CC _D ( exp o. ( z e. CC |-> ( z - x ) ) ) ) = ( CC _D ( z e. CC |-> ( exp ` ( z - x ) ) ) ) ) |
46 |
4
|
fmpttd |
|- ( x e. CC -> ( z e. CC |-> ( z - x ) ) : CC --> CC ) |
47 |
|
oveq1 |
|- ( z = x -> ( z - x ) = ( x - x ) ) |
48 |
|
eqid |
|- ( z e. CC |-> ( z - x ) ) = ( z e. CC |-> ( z - x ) ) |
49 |
|
ovex |
|- ( x - x ) e. _V |
50 |
47 48 49
|
fvmpt |
|- ( x e. CC -> ( ( z e. CC |-> ( z - x ) ) ` x ) = ( x - x ) ) |
51 |
|
subid |
|- ( x e. CC -> ( x - x ) = 0 ) |
52 |
50 51
|
eqtrd |
|- ( x e. CC -> ( ( z e. CC |-> ( z - x ) ) ` x ) = 0 ) |
53 |
|
dveflem |
|- 0 ( CC _D exp ) 1 |
54 |
52 53
|
eqbrtrdi |
|- ( x e. CC -> ( ( z e. CC |-> ( z - x ) ) ` x ) ( CC _D exp ) 1 ) |
55 |
|
1ex |
|- 1 e. _V |
56 |
55
|
snid |
|- 1 e. { 1 } |
57 |
|
opelxpi |
|- ( ( x e. CC /\ 1 e. { 1 } ) -> <. x , 1 >. e. ( CC X. { 1 } ) ) |
58 |
56 57
|
mpan2 |
|- ( x e. CC -> <. x , 1 >. e. ( CC X. { 1 } ) ) |
59 |
|
cnelprrecn |
|- CC e. { RR , CC } |
60 |
59
|
a1i |
|- ( x e. CC -> CC e. { RR , CC } ) |
61 |
|
simpr |
|- ( ( x e. CC /\ z e. CC ) -> z e. CC ) |
62 |
|
1cnd |
|- ( ( x e. CC /\ z e. CC ) -> 1 e. CC ) |
63 |
60
|
dvmptid |
|- ( x e. CC -> ( CC _D ( z e. CC |-> z ) ) = ( z e. CC |-> 1 ) ) |
64 |
|
simpl |
|- ( ( x e. CC /\ z e. CC ) -> x e. CC ) |
65 |
|
0cnd |
|- ( ( x e. CC /\ z e. CC ) -> 0 e. CC ) |
66 |
|
id |
|- ( x e. CC -> x e. CC ) |
67 |
60 66
|
dvmptc |
|- ( x e. CC -> ( CC _D ( z e. CC |-> x ) ) = ( z e. CC |-> 0 ) ) |
68 |
60 61 62 63 64 65 67
|
dvmptsub |
|- ( x e. CC -> ( CC _D ( z e. CC |-> ( z - x ) ) ) = ( z e. CC |-> ( 1 - 0 ) ) ) |
69 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
70 |
69
|
mpteq2i |
|- ( z e. CC |-> ( 1 - 0 ) ) = ( z e. CC |-> 1 ) |
71 |
|
fconstmpt |
|- ( CC X. { 1 } ) = ( z e. CC |-> 1 ) |
72 |
70 71
|
eqtr4i |
|- ( z e. CC |-> ( 1 - 0 ) ) = ( CC X. { 1 } ) |
73 |
68 72
|
eqtrdi |
|- ( x e. CC -> ( CC _D ( z e. CC |-> ( z - x ) ) ) = ( CC X. { 1 } ) ) |
74 |
58 73
|
eleqtrrd |
|- ( x e. CC -> <. x , 1 >. e. ( CC _D ( z e. CC |-> ( z - x ) ) ) ) |
75 |
|
df-br |
|- ( x ( CC _D ( z e. CC |-> ( z - x ) ) ) 1 <-> <. x , 1 >. e. ( CC _D ( z e. CC |-> ( z - x ) ) ) ) |
76 |
74 75
|
sylibr |
|- ( x e. CC -> x ( CC _D ( z e. CC |-> ( z - x ) ) ) 1 ) |
77 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
78 |
20 29 46 29 29 29 34 34 54 76 77
|
dvcobr |
|- ( x e. CC -> x ( CC _D ( exp o. ( z e. CC |-> ( z - x ) ) ) ) ( 1 x. 1 ) ) |
79 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
80 |
78 79
|
breqtrdi |
|- ( x e. CC -> x ( CC _D ( exp o. ( z e. CC |-> ( z - x ) ) ) ) 1 ) |
81 |
45 80
|
breqdi |
|- ( x e. CC -> x ( CC _D ( z e. CC |-> ( exp ` ( z - x ) ) ) ) 1 ) |
82 |
28 29 32 29 29 33 34 43 81 77
|
dvmulbr |
|- ( x e. CC -> x ( CC _D ( ( CC X. { ( exp ` x ) } ) oF x. ( z e. CC |-> ( exp ` ( z - x ) ) ) ) ) ( ( 0 x. ( ( z e. CC |-> ( exp ` ( z - x ) ) ) ` x ) ) + ( 1 x. ( ( CC X. { ( exp ` x ) } ) ` x ) ) ) ) |
83 |
32 66
|
ffvelrnd |
|- ( x e. CC -> ( ( z e. CC |-> ( exp ` ( z - x ) ) ) ` x ) e. CC ) |
84 |
83
|
mul02d |
|- ( x e. CC -> ( 0 x. ( ( z e. CC |-> ( exp ` ( z - x ) ) ) ` x ) ) = 0 ) |
85 |
|
fvex |
|- ( exp ` x ) e. _V |
86 |
85
|
fvconst2 |
|- ( x e. CC -> ( ( CC X. { ( exp ` x ) } ) ` x ) = ( exp ` x ) ) |
87 |
86
|
oveq2d |
|- ( x e. CC -> ( 1 x. ( ( CC X. { ( exp ` x ) } ) ` x ) ) = ( 1 x. ( exp ` x ) ) ) |
88 |
24
|
mulid2d |
|- ( x e. CC -> ( 1 x. ( exp ` x ) ) = ( exp ` x ) ) |
89 |
87 88
|
eqtrd |
|- ( x e. CC -> ( 1 x. ( ( CC X. { ( exp ` x ) } ) ` x ) ) = ( exp ` x ) ) |
90 |
84 89
|
oveq12d |
|- ( x e. CC -> ( ( 0 x. ( ( z e. CC |-> ( exp ` ( z - x ) ) ) ` x ) ) + ( 1 x. ( ( CC X. { ( exp ` x ) } ) ` x ) ) ) = ( 0 + ( exp ` x ) ) ) |
91 |
24
|
addid2d |
|- ( x e. CC -> ( 0 + ( exp ` x ) ) = ( exp ` x ) ) |
92 |
90 91
|
eqtrd |
|- ( x e. CC -> ( ( 0 x. ( ( z e. CC |-> ( exp ` ( z - x ) ) ) ` x ) ) + ( 1 x. ( ( CC X. { ( exp ` x ) } ) ` x ) ) ) = ( exp ` x ) ) |
93 |
82 92
|
breqtrd |
|- ( x e. CC -> x ( CC _D ( ( CC X. { ( exp ` x ) } ) oF x. ( z e. CC |-> ( exp ` ( z - x ) ) ) ) ) ( exp ` x ) ) |
94 |
23 93
|
breqdi |
|- ( x e. CC -> x ( CC _D exp ) ( exp ` x ) ) |
95 |
|
vex |
|- x e. _V |
96 |
95 85
|
breldm |
|- ( x ( CC _D exp ) ( exp ` x ) -> x e. dom ( CC _D exp ) ) |
97 |
94 96
|
syl |
|- ( x e. CC -> x e. dom ( CC _D exp ) ) |
98 |
97
|
ssriv |
|- CC C_ dom ( CC _D exp ) |
99 |
2 98
|
eqssi |
|- dom ( CC _D exp ) = CC |
100 |
99
|
feq2i |
|- ( ( CC _D exp ) : dom ( CC _D exp ) --> CC <-> ( CC _D exp ) : CC --> CC ) |
101 |
1 100
|
mpbi |
|- ( CC _D exp ) : CC --> CC |
102 |
101
|
a1i |
|- ( T. -> ( CC _D exp ) : CC --> CC ) |
103 |
102
|
feqmptd |
|- ( T. -> ( CC _D exp ) = ( x e. CC |-> ( ( CC _D exp ) ` x ) ) ) |
104 |
|
ffun |
|- ( ( CC _D exp ) : dom ( CC _D exp ) --> CC -> Fun ( CC _D exp ) ) |
105 |
1 104
|
ax-mp |
|- Fun ( CC _D exp ) |
106 |
|
funbrfv |
|- ( Fun ( CC _D exp ) -> ( x ( CC _D exp ) ( exp ` x ) -> ( ( CC _D exp ) ` x ) = ( exp ` x ) ) ) |
107 |
105 94 106
|
mpsyl |
|- ( x e. CC -> ( ( CC _D exp ) ` x ) = ( exp ` x ) ) |
108 |
107
|
mpteq2ia |
|- ( x e. CC |-> ( ( CC _D exp ) ` x ) ) = ( x e. CC |-> ( exp ` x ) ) |
109 |
103 108
|
eqtrdi |
|- ( T. -> ( CC _D exp ) = ( x e. CC |-> ( exp ` x ) ) ) |
110 |
19
|
a1i |
|- ( T. -> exp : CC --> CC ) |
111 |
110
|
feqmptd |
|- ( T. -> exp = ( x e. CC |-> ( exp ` x ) ) ) |
112 |
109 111
|
eqtr4d |
|- ( T. -> ( CC _D exp ) = exp ) |
113 |
112
|
mptru |
|- ( CC _D exp ) = exp |