| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0cn |  |-  0 e. CC | 
						
							| 2 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 3 | 2 | cnfldtop |  |-  ( TopOpen ` CCfld ) e. Top | 
						
							| 4 |  | unicntop |  |-  CC = U. ( TopOpen ` CCfld ) | 
						
							| 5 | 4 | ntrtop |  |-  ( ( TopOpen ` CCfld ) e. Top -> ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC ) | 
						
							| 6 | 3 5 | ax-mp |  |-  ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC | 
						
							| 7 | 1 6 | eleqtrri |  |-  0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) | 
						
							| 8 |  | ax-1cn |  |-  1 e. CC | 
						
							| 9 |  | 1rp |  |-  1 e. RR+ | 
						
							| 10 |  | ifcl |  |-  ( ( x e. RR+ /\ 1 e. RR+ ) -> if ( x <_ 1 , x , 1 ) e. RR+ ) | 
						
							| 11 | 9 10 | mpan2 |  |-  ( x e. RR+ -> if ( x <_ 1 , x , 1 ) e. RR+ ) | 
						
							| 12 |  | eldifsn |  |-  ( w e. ( CC \ { 0 } ) <-> ( w e. CC /\ w =/= 0 ) ) | 
						
							| 13 |  | simprl |  |-  ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> w e. CC ) | 
						
							| 14 | 13 | subid1d |  |-  ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( w - 0 ) = w ) | 
						
							| 15 | 14 | fveq2d |  |-  ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( abs ` ( w - 0 ) ) = ( abs ` w ) ) | 
						
							| 16 | 15 | breq1d |  |-  ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) <-> ( abs ` w ) < if ( x <_ 1 , x , 1 ) ) ) | 
						
							| 17 | 13 | abscld |  |-  ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( abs ` w ) e. RR ) | 
						
							| 18 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 19 | 18 | adantr |  |-  ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> x e. RR ) | 
						
							| 20 |  | 1red |  |-  ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> 1 e. RR ) | 
						
							| 21 |  | ltmin |  |-  ( ( ( abs ` w ) e. RR /\ x e. RR /\ 1 e. RR ) -> ( ( abs ` w ) < if ( x <_ 1 , x , 1 ) <-> ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) ) | 
						
							| 22 | 17 19 20 21 | syl3anc |  |-  ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( abs ` w ) < if ( x <_ 1 , x , 1 ) <-> ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) ) | 
						
							| 23 | 16 22 | bitrd |  |-  ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) <-> ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) ) | 
						
							| 24 |  | simplr |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( w e. CC /\ w =/= 0 ) ) | 
						
							| 25 | 24 12 | sylibr |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> w e. ( CC \ { 0 } ) ) | 
						
							| 26 |  | fveq2 |  |-  ( z = w -> ( exp ` z ) = ( exp ` w ) ) | 
						
							| 27 | 26 | oveq1d |  |-  ( z = w -> ( ( exp ` z ) - 1 ) = ( ( exp ` w ) - 1 ) ) | 
						
							| 28 |  | id |  |-  ( z = w -> z = w ) | 
						
							| 29 | 27 28 | oveq12d |  |-  ( z = w -> ( ( ( exp ` z ) - 1 ) / z ) = ( ( ( exp ` w ) - 1 ) / w ) ) | 
						
							| 30 |  | eqid |  |-  ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) = ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) | 
						
							| 31 |  | ovex |  |-  ( ( ( exp ` w ) - 1 ) / w ) e. _V | 
						
							| 32 | 29 30 31 | fvmpt |  |-  ( w e. ( CC \ { 0 } ) -> ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) = ( ( ( exp ` w ) - 1 ) / w ) ) | 
						
							| 33 | 25 32 | syl |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) = ( ( ( exp ` w ) - 1 ) / w ) ) | 
						
							| 34 | 33 | fvoveq1d |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) = ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) | 
						
							| 35 |  | simplrl |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> w e. CC ) | 
						
							| 36 |  | efcl |  |-  ( w e. CC -> ( exp ` w ) e. CC ) | 
						
							| 37 | 35 36 | syl |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( exp ` w ) e. CC ) | 
						
							| 38 |  | 1cnd |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> 1 e. CC ) | 
						
							| 39 | 37 38 | subcld |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( ( exp ` w ) - 1 ) e. CC ) | 
						
							| 40 |  | simplrr |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> w =/= 0 ) | 
						
							| 41 | 39 35 40 | divcld |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( ( ( exp ` w ) - 1 ) / w ) e. CC ) | 
						
							| 42 | 41 38 | subcld |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) e. CC ) | 
						
							| 43 | 42 | abscld |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) e. RR ) | 
						
							| 44 | 35 | abscld |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` w ) e. RR ) | 
						
							| 45 |  | simpll |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> x e. RR+ ) | 
						
							| 46 | 45 | rpred |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> x e. RR ) | 
						
							| 47 |  | abscl |  |-  ( w e. CC -> ( abs ` w ) e. RR ) | 
						
							| 48 | 47 | ad2antrr |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` w ) e. RR ) | 
						
							| 49 | 36 | ad2antrr |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( exp ` w ) e. CC ) | 
						
							| 50 |  | subcl |  |-  ( ( ( exp ` w ) e. CC /\ 1 e. CC ) -> ( ( exp ` w ) - 1 ) e. CC ) | 
						
							| 51 | 49 8 50 | sylancl |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( exp ` w ) - 1 ) e. CC ) | 
						
							| 52 |  | simpll |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> w e. CC ) | 
						
							| 53 |  | simplr |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> w =/= 0 ) | 
						
							| 54 | 51 52 53 | divcld |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( exp ` w ) - 1 ) / w ) e. CC ) | 
						
							| 55 |  | 1cnd |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 1 e. CC ) | 
						
							| 56 | 54 55 | subcld |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) e. CC ) | 
						
							| 57 | 56 | abscld |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) e. RR ) | 
						
							| 58 | 48 57 | remulcld |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) e. RR ) | 
						
							| 59 | 48 | resqcld |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) ^ 2 ) e. RR ) | 
						
							| 60 |  | 3re |  |-  3 e. RR | 
						
							| 61 |  | 4nn |  |-  4 e. NN | 
						
							| 62 |  | nndivre |  |-  ( ( 3 e. RR /\ 4 e. NN ) -> ( 3 / 4 ) e. RR ) | 
						
							| 63 | 60 61 62 | mp2an |  |-  ( 3 / 4 ) e. RR | 
						
							| 64 |  | remulcl |  |-  ( ( ( ( abs ` w ) ^ 2 ) e. RR /\ ( 3 / 4 ) e. RR ) -> ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) e. RR ) | 
						
							| 65 | 59 63 64 | sylancl |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) e. RR ) | 
						
							| 66 | 51 52 | subcld |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( exp ` w ) - 1 ) - w ) e. CC ) | 
						
							| 67 | 66 52 53 | divcan2d |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w x. ( ( ( ( exp ` w ) - 1 ) - w ) / w ) ) = ( ( ( exp ` w ) - 1 ) - w ) ) | 
						
							| 68 | 51 52 52 53 | divsubdird |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( ( exp ` w ) - 1 ) - w ) / w ) = ( ( ( ( exp ` w ) - 1 ) / w ) - ( w / w ) ) ) | 
						
							| 69 | 52 53 | dividd |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w / w ) = 1 ) | 
						
							| 70 | 69 | oveq2d |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( ( exp ` w ) - 1 ) / w ) - ( w / w ) ) = ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) | 
						
							| 71 | 68 70 | eqtrd |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( ( exp ` w ) - 1 ) - w ) / w ) = ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) | 
						
							| 72 | 71 | oveq2d |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w x. ( ( ( ( exp ` w ) - 1 ) - w ) / w ) ) = ( w x. ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) | 
						
							| 73 | 49 55 52 | subsub4d |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( exp ` w ) - 1 ) - w ) = ( ( exp ` w ) - ( 1 + w ) ) ) | 
						
							| 74 |  | addcl |  |-  ( ( 1 e. CC /\ w e. CC ) -> ( 1 + w ) e. CC ) | 
						
							| 75 | 8 52 74 | sylancr |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 1 + w ) e. CC ) | 
						
							| 76 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 77 |  | eqid |  |-  ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) | 
						
							| 78 | 77 | eftlcl |  |-  ( ( w e. CC /\ 2 e. NN0 ) -> sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) | 
						
							| 79 | 52 76 78 | sylancl |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) | 
						
							| 80 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 81 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 82 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 83 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 84 |  | 0cnd |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 0 e. CC ) | 
						
							| 85 | 77 | efval2 |  |-  ( w e. CC -> ( exp ` w ) = sum_ k e. NN0 ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) | 
						
							| 86 | 85 | ad2antrr |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( exp ` w ) = sum_ k e. NN0 ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) | 
						
							| 87 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 88 | 87 | sumeq1i |  |-  sum_ k e. NN0 ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) = sum_ k e. ( ZZ>= ` 0 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) | 
						
							| 89 | 86 88 | eqtr2di |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> sum_ k e. ( ZZ>= ` 0 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) = ( exp ` w ) ) | 
						
							| 90 | 89 | oveq2d |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 0 + sum_ k e. ( ZZ>= ` 0 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( 0 + ( exp ` w ) ) ) | 
						
							| 91 | 49 | addlidd |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 0 + ( exp ` w ) ) = ( exp ` w ) ) | 
						
							| 92 | 90 91 | eqtr2d |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( exp ` w ) = ( 0 + sum_ k e. ( ZZ>= ` 0 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) ) | 
						
							| 93 |  | eft0val |  |-  ( w e. CC -> ( ( w ^ 0 ) / ( ! ` 0 ) ) = 1 ) | 
						
							| 94 | 93 | ad2antrr |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( w ^ 0 ) / ( ! ` 0 ) ) = 1 ) | 
						
							| 95 | 94 | oveq2d |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 0 + ( ( w ^ 0 ) / ( ! ` 0 ) ) ) = ( 0 + 1 ) ) | 
						
							| 96 | 95 82 | eqtr4di |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 0 + ( ( w ^ 0 ) / ( ! ` 0 ) ) ) = 1 ) | 
						
							| 97 | 77 82 83 52 84 92 96 | efsep |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( exp ` w ) = ( 1 + sum_ k e. ( ZZ>= ` 1 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) ) | 
						
							| 98 |  | exp1 |  |-  ( w e. CC -> ( w ^ 1 ) = w ) | 
						
							| 99 | 98 | ad2antrr |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w ^ 1 ) = w ) | 
						
							| 100 | 99 | oveq1d |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( w ^ 1 ) / ( ! ` 1 ) ) = ( w / ( ! ` 1 ) ) ) | 
						
							| 101 |  | fac1 |  |-  ( ! ` 1 ) = 1 | 
						
							| 102 | 101 | oveq2i |  |-  ( w / ( ! ` 1 ) ) = ( w / 1 ) | 
						
							| 103 | 100 102 | eqtrdi |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( w ^ 1 ) / ( ! ` 1 ) ) = ( w / 1 ) ) | 
						
							| 104 |  | div1 |  |-  ( w e. CC -> ( w / 1 ) = w ) | 
						
							| 105 | 104 | ad2antrr |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w / 1 ) = w ) | 
						
							| 106 | 103 105 | eqtrd |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( w ^ 1 ) / ( ! ` 1 ) ) = w ) | 
						
							| 107 | 106 | oveq2d |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 1 + ( ( w ^ 1 ) / ( ! ` 1 ) ) ) = ( 1 + w ) ) | 
						
							| 108 | 77 80 81 52 55 97 107 | efsep |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( exp ` w ) = ( ( 1 + w ) + sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) ) | 
						
							| 109 | 75 79 108 | mvrladdd |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( exp ` w ) - ( 1 + w ) ) = sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) | 
						
							| 110 | 73 109 | eqtrd |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( exp ` w ) - 1 ) - w ) = sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) | 
						
							| 111 | 67 72 110 | 3eqtr3d |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w x. ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) = sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) | 
						
							| 112 | 111 | fveq2d |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` ( w x. ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) = ( abs ` sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) ) | 
						
							| 113 | 52 56 | absmuld |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` ( w x. ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) = ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) ) | 
						
							| 114 | 112 113 | eqtr3d |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) ) | 
						
							| 115 |  | eqid |  |-  ( n e. NN0 |-> ( ( ( abs ` w ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( abs ` w ) ^ n ) / ( ! ` n ) ) ) | 
						
							| 116 |  | eqid |  |-  ( n e. NN0 |-> ( ( ( ( abs ` w ) ^ 2 ) / ( ! ` 2 ) ) x. ( ( 1 / ( 2 + 1 ) ) ^ n ) ) ) = ( n e. NN0 |-> ( ( ( ( abs ` w ) ^ 2 ) / ( ! ` 2 ) ) x. ( ( 1 / ( 2 + 1 ) ) ^ n ) ) ) | 
						
							| 117 |  | 2nn |  |-  2 e. NN | 
						
							| 118 | 117 | a1i |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 2 e. NN ) | 
						
							| 119 |  | 1red |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 1 e. RR ) | 
						
							| 120 |  | simpr |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` w ) < 1 ) | 
						
							| 121 | 48 119 120 | ltled |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` w ) <_ 1 ) | 
						
							| 122 | 77 115 116 118 52 121 | eftlub |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) <_ ( ( ( abs ` w ) ^ 2 ) x. ( ( 2 + 1 ) / ( ( ! ` 2 ) x. 2 ) ) ) ) | 
						
							| 123 | 114 122 | eqbrtrrd |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) <_ ( ( ( abs ` w ) ^ 2 ) x. ( ( 2 + 1 ) / ( ( ! ` 2 ) x. 2 ) ) ) ) | 
						
							| 124 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 125 |  | fac2 |  |-  ( ! ` 2 ) = 2 | 
						
							| 126 | 125 | oveq1i |  |-  ( ( ! ` 2 ) x. 2 ) = ( 2 x. 2 ) | 
						
							| 127 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 128 | 126 127 | eqtr2i |  |-  4 = ( ( ! ` 2 ) x. 2 ) | 
						
							| 129 | 124 128 | oveq12i |  |-  ( 3 / 4 ) = ( ( 2 + 1 ) / ( ( ! ` 2 ) x. 2 ) ) | 
						
							| 130 | 129 | oveq2i |  |-  ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) = ( ( ( abs ` w ) ^ 2 ) x. ( ( 2 + 1 ) / ( ( ! ` 2 ) x. 2 ) ) ) | 
						
							| 131 | 123 130 | breqtrrdi |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) <_ ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) ) | 
						
							| 132 | 63 | a1i |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 3 / 4 ) e. RR ) | 
						
							| 133 | 48 | sqge0d |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 0 <_ ( ( abs ` w ) ^ 2 ) ) | 
						
							| 134 |  | 1re |  |-  1 e. RR | 
						
							| 135 |  | 3lt4 |  |-  3 < 4 | 
						
							| 136 |  | 4cn |  |-  4 e. CC | 
						
							| 137 | 136 | mulridi |  |-  ( 4 x. 1 ) = 4 | 
						
							| 138 | 135 137 | breqtrri |  |-  3 < ( 4 x. 1 ) | 
						
							| 139 |  | 4re |  |-  4 e. RR | 
						
							| 140 |  | 4pos |  |-  0 < 4 | 
						
							| 141 | 139 140 | pm3.2i |  |-  ( 4 e. RR /\ 0 < 4 ) | 
						
							| 142 |  | ltdivmul |  |-  ( ( 3 e. RR /\ 1 e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( 3 / 4 ) < 1 <-> 3 < ( 4 x. 1 ) ) ) | 
						
							| 143 | 60 134 141 142 | mp3an |  |-  ( ( 3 / 4 ) < 1 <-> 3 < ( 4 x. 1 ) ) | 
						
							| 144 | 138 143 | mpbir |  |-  ( 3 / 4 ) < 1 | 
						
							| 145 | 63 134 144 | ltleii |  |-  ( 3 / 4 ) <_ 1 | 
						
							| 146 | 145 | a1i |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 3 / 4 ) <_ 1 ) | 
						
							| 147 | 132 119 59 133 146 | lemul2ad |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) <_ ( ( ( abs ` w ) ^ 2 ) x. 1 ) ) | 
						
							| 148 | 48 | recnd |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` w ) e. CC ) | 
						
							| 149 | 148 | sqcld |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) ^ 2 ) e. CC ) | 
						
							| 150 | 149 | mulridd |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( abs ` w ) ^ 2 ) x. 1 ) = ( ( abs ` w ) ^ 2 ) ) | 
						
							| 151 | 147 150 | breqtrd |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) <_ ( ( abs ` w ) ^ 2 ) ) | 
						
							| 152 | 58 65 59 131 151 | letrd |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) <_ ( ( abs ` w ) ^ 2 ) ) | 
						
							| 153 | 148 | sqvald |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) ^ 2 ) = ( ( abs ` w ) x. ( abs ` w ) ) ) | 
						
							| 154 | 152 153 | breqtrd |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) <_ ( ( abs ` w ) x. ( abs ` w ) ) ) | 
						
							| 155 |  | absgt0 |  |-  ( w e. CC -> ( w =/= 0 <-> 0 < ( abs ` w ) ) ) | 
						
							| 156 | 155 | ad2antrr |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w =/= 0 <-> 0 < ( abs ` w ) ) ) | 
						
							| 157 | 53 156 | mpbid |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 0 < ( abs ` w ) ) | 
						
							| 158 | 48 157 | elrpd |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` w ) e. RR+ ) | 
						
							| 159 | 57 48 158 | lemul2d |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) <_ ( abs ` w ) <-> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) <_ ( ( abs ` w ) x. ( abs ` w ) ) ) ) | 
						
							| 160 | 154 159 | mpbird |  |-  ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) <_ ( abs ` w ) ) | 
						
							| 161 | 160 | ad2ant2l |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) <_ ( abs ` w ) ) | 
						
							| 162 |  | simprl |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` w ) < x ) | 
						
							| 163 | 43 44 46 161 162 | lelttrd |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) < x ) | 
						
							| 164 | 34 163 | eqbrtrd |  |-  ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) | 
						
							| 165 | 164 | ex |  |-  ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) | 
						
							| 166 | 23 165 | sylbid |  |-  ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) | 
						
							| 167 | 166 | adantld |  |-  ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) | 
						
							| 168 | 12 167 | sylan2b |  |-  ( ( x e. RR+ /\ w e. ( CC \ { 0 } ) ) -> ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) | 
						
							| 169 | 168 | ralrimiva |  |-  ( x e. RR+ -> A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) | 
						
							| 170 |  | brimralrspcev |  |-  ( ( if ( x <_ 1 , x , 1 ) e. RR+ /\ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) -> E. y e. RR+ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < y ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) | 
						
							| 171 | 11 169 170 | syl2anc |  |-  ( x e. RR+ -> E. y e. RR+ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < y ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) | 
						
							| 172 | 171 | rgen |  |-  A. x e. RR+ E. y e. RR+ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < y ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) | 
						
							| 173 |  | eldifi |  |-  ( z e. ( CC \ { 0 } ) -> z e. CC ) | 
						
							| 174 |  | efcl |  |-  ( z e. CC -> ( exp ` z ) e. CC ) | 
						
							| 175 | 173 174 | syl |  |-  ( z e. ( CC \ { 0 } ) -> ( exp ` z ) e. CC ) | 
						
							| 176 |  | 1cnd |  |-  ( z e. ( CC \ { 0 } ) -> 1 e. CC ) | 
						
							| 177 | 175 176 | subcld |  |-  ( z e. ( CC \ { 0 } ) -> ( ( exp ` z ) - 1 ) e. CC ) | 
						
							| 178 |  | eldifsni |  |-  ( z e. ( CC \ { 0 } ) -> z =/= 0 ) | 
						
							| 179 | 177 173 178 | divcld |  |-  ( z e. ( CC \ { 0 } ) -> ( ( ( exp ` z ) - 1 ) / z ) e. CC ) | 
						
							| 180 | 30 179 | fmpti |  |-  ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) : ( CC \ { 0 } ) --> CC | 
						
							| 181 | 180 | a1i |  |-  ( T. -> ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) : ( CC \ { 0 } ) --> CC ) | 
						
							| 182 |  | difssd |  |-  ( T. -> ( CC \ { 0 } ) C_ CC ) | 
						
							| 183 |  | 0cnd |  |-  ( T. -> 0 e. CC ) | 
						
							| 184 | 181 182 183 | ellimc3 |  |-  ( T. -> ( 1 e. ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) limCC 0 ) <-> ( 1 e. CC /\ A. x e. RR+ E. y e. RR+ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < y ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) ) ) | 
						
							| 185 | 184 | mptru |  |-  ( 1 e. ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) limCC 0 ) <-> ( 1 e. CC /\ A. x e. RR+ E. y e. RR+ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < y ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) ) | 
						
							| 186 | 8 172 185 | mpbir2an |  |-  1 e. ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) limCC 0 ) | 
						
							| 187 | 2 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 188 | 187 | toponrestid |  |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) | 
						
							| 189 | 173 | subid1d |  |-  ( z e. ( CC \ { 0 } ) -> ( z - 0 ) = z ) | 
						
							| 190 | 189 | oveq2d |  |-  ( z e. ( CC \ { 0 } ) -> ( ( ( exp ` z ) - ( exp ` 0 ) ) / ( z - 0 ) ) = ( ( ( exp ` z ) - ( exp ` 0 ) ) / z ) ) | 
						
							| 191 |  | ef0 |  |-  ( exp ` 0 ) = 1 | 
						
							| 192 | 191 | oveq2i |  |-  ( ( exp ` z ) - ( exp ` 0 ) ) = ( ( exp ` z ) - 1 ) | 
						
							| 193 | 192 | oveq1i |  |-  ( ( ( exp ` z ) - ( exp ` 0 ) ) / z ) = ( ( ( exp ` z ) - 1 ) / z ) | 
						
							| 194 | 190 193 | eqtr2di |  |-  ( z e. ( CC \ { 0 } ) -> ( ( ( exp ` z ) - 1 ) / z ) = ( ( ( exp ` z ) - ( exp ` 0 ) ) / ( z - 0 ) ) ) | 
						
							| 195 | 194 | mpteq2ia |  |-  ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) = ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - ( exp ` 0 ) ) / ( z - 0 ) ) ) | 
						
							| 196 |  | ssidd |  |-  ( T. -> CC C_ CC ) | 
						
							| 197 |  | eff |  |-  exp : CC --> CC | 
						
							| 198 | 197 | a1i |  |-  ( T. -> exp : CC --> CC ) | 
						
							| 199 | 188 2 195 196 198 196 | eldv |  |-  ( T. -> ( 0 ( CC _D exp ) 1 <-> ( 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) /\ 1 e. ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) limCC 0 ) ) ) ) | 
						
							| 200 | 199 | mptru |  |-  ( 0 ( CC _D exp ) 1 <-> ( 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) /\ 1 e. ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) limCC 0 ) ) ) | 
						
							| 201 | 7 186 200 | mpbir2an |  |-  0 ( CC _D exp ) 1 |