Metamath Proof Explorer


Theorem efval2

Description: Value of the exponential function. (Contributed by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypothesis efcvg.1
|- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) )
Assertion efval2
|- ( A e. CC -> ( exp ` A ) = sum_ k e. NN0 ( F ` k ) )

Proof

Step Hyp Ref Expression
1 efcvg.1
 |-  F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) )
2 efval
 |-  ( A e. CC -> ( exp ` A ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) )
3 1 eftval
 |-  ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) )
4 3 sumeq2i
 |-  sum_ k e. NN0 ( F ` k ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) )
5 2 4 eqtr4di
 |-  ( A e. CC -> ( exp ` A ) = sum_ k e. NN0 ( F ` k ) )