Metamath Proof Explorer


Theorem efval2

Description: Value of the exponential function. (Contributed by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypothesis efcvg.1 F=n0Ann!
Assertion efval2 AeA=k0Fk

Proof

Step Hyp Ref Expression
1 efcvg.1 F=n0Ann!
2 efval AeA=k0Akk!
3 1 eftval k0Fk=Akk!
4 3 sumeq2i k0Fk=k0Akk!
5 2 4 eqtr4di AeA=k0Fk