| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eftl.1 |
|- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
| 2 |
|
eftl.2 |
|- G = ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) |
| 3 |
|
eftl.3 |
|- H = ( n e. NN0 |-> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ n ) ) ) |
| 4 |
|
eftl.4 |
|- ( ph -> M e. NN ) |
| 5 |
|
eftl.5 |
|- ( ph -> A e. CC ) |
| 6 |
|
eftl.6 |
|- ( ph -> ( abs ` A ) <_ 1 ) |
| 7 |
4
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 8 |
1
|
eftlcl |
|- ( ( A e. CC /\ M e. NN0 ) -> sum_ k e. ( ZZ>= ` M ) ( F ` k ) e. CC ) |
| 9 |
5 7 8
|
syl2anc |
|- ( ph -> sum_ k e. ( ZZ>= ` M ) ( F ` k ) e. CC ) |
| 10 |
9
|
abscld |
|- ( ph -> ( abs ` sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) e. RR ) |
| 11 |
5
|
abscld |
|- ( ph -> ( abs ` A ) e. RR ) |
| 12 |
2
|
reeftlcl |
|- ( ( ( abs ` A ) e. RR /\ M e. NN0 ) -> sum_ k e. ( ZZ>= ` M ) ( G ` k ) e. RR ) |
| 13 |
11 7 12
|
syl2anc |
|- ( ph -> sum_ k e. ( ZZ>= ` M ) ( G ` k ) e. RR ) |
| 14 |
11 7
|
reexpcld |
|- ( ph -> ( ( abs ` A ) ^ M ) e. RR ) |
| 15 |
|
peano2nn0 |
|- ( M e. NN0 -> ( M + 1 ) e. NN0 ) |
| 16 |
7 15
|
syl |
|- ( ph -> ( M + 1 ) e. NN0 ) |
| 17 |
16
|
nn0red |
|- ( ph -> ( M + 1 ) e. RR ) |
| 18 |
7
|
faccld |
|- ( ph -> ( ! ` M ) e. NN ) |
| 19 |
18 4
|
nnmulcld |
|- ( ph -> ( ( ! ` M ) x. M ) e. NN ) |
| 20 |
17 19
|
nndivred |
|- ( ph -> ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) e. RR ) |
| 21 |
14 20
|
remulcld |
|- ( ph -> ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) e. RR ) |
| 22 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
| 23 |
4
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 24 |
|
eqidd |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( F ` k ) ) |
| 25 |
|
eluznn0 |
|- ( ( M e. NN0 /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
| 26 |
7 25
|
sylan |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
| 27 |
1
|
eftval |
|- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 28 |
27
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 29 |
|
eftcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
| 30 |
5 29
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
| 31 |
28 30
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
| 32 |
26 31
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) e. CC ) |
| 33 |
1
|
eftlcvg |
|- ( ( A e. CC /\ M e. NN0 ) -> seq M ( + , F ) e. dom ~~> ) |
| 34 |
5 7 33
|
syl2anc |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
| 35 |
22 23 24 32 34
|
isumclim2 |
|- ( ph -> seq M ( + , F ) ~~> sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) |
| 36 |
|
eqidd |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( G ` k ) = ( G ` k ) ) |
| 37 |
2
|
eftval |
|- ( k e. NN0 -> ( G ` k ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
| 38 |
37
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
| 39 |
|
reeftcl |
|- ( ( ( abs ` A ) e. RR /\ k e. NN0 ) -> ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) e. RR ) |
| 40 |
11 39
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) e. RR ) |
| 41 |
38 40
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) e. RR ) |
| 42 |
26 41
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( G ` k ) e. RR ) |
| 43 |
42
|
recnd |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( G ` k ) e. CC ) |
| 44 |
11
|
recnd |
|- ( ph -> ( abs ` A ) e. CC ) |
| 45 |
2
|
eftlcvg |
|- ( ( ( abs ` A ) e. CC /\ M e. NN0 ) -> seq M ( + , G ) e. dom ~~> ) |
| 46 |
44 7 45
|
syl2anc |
|- ( ph -> seq M ( + , G ) e. dom ~~> ) |
| 47 |
22 23 36 43 46
|
isumclim2 |
|- ( ph -> seq M ( + , G ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
| 48 |
|
eftabs |
|- ( ( A e. CC /\ k e. NN0 ) -> ( abs ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
| 49 |
5 48
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
| 50 |
28
|
fveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( abs ` ( F ` k ) ) = ( abs ` ( ( A ^ k ) / ( ! ` k ) ) ) ) |
| 51 |
49 50 38
|
3eqtr4rd |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
| 52 |
26 51
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
| 53 |
22 35 47 23 32 52
|
iserabs |
|- ( ph -> ( abs ` sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) <_ sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
| 54 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 55 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 56 |
4
|
nncnd |
|- ( ph -> M e. CC ) |
| 57 |
|
nn0cn |
|- ( j e. NN0 -> j e. CC ) |
| 58 |
|
nn0ex |
|- NN0 e. _V |
| 59 |
58
|
mptex |
|- ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) e. _V |
| 60 |
2 59
|
eqeltri |
|- G e. _V |
| 61 |
60
|
shftval4 |
|- ( ( M e. CC /\ j e. CC ) -> ( ( G shift -u M ) ` j ) = ( G ` ( M + j ) ) ) |
| 62 |
56 57 61
|
syl2an |
|- ( ( ph /\ j e. NN0 ) -> ( ( G shift -u M ) ` j ) = ( G ` ( M + j ) ) ) |
| 63 |
|
nn0addcl |
|- ( ( M e. NN0 /\ j e. NN0 ) -> ( M + j ) e. NN0 ) |
| 64 |
7 63
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( M + j ) e. NN0 ) |
| 65 |
2
|
eftval |
|- ( ( M + j ) e. NN0 -> ( G ` ( M + j ) ) = ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) ) |
| 66 |
64 65
|
syl |
|- ( ( ph /\ j e. NN0 ) -> ( G ` ( M + j ) ) = ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) ) |
| 67 |
11
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( abs ` A ) e. RR ) |
| 68 |
|
reeftcl |
|- ( ( ( abs ` A ) e. RR /\ ( M + j ) e. NN0 ) -> ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) e. RR ) |
| 69 |
67 64 68
|
syl2anc |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) e. RR ) |
| 70 |
66 69
|
eqeltrd |
|- ( ( ph /\ j e. NN0 ) -> ( G ` ( M + j ) ) e. RR ) |
| 71 |
|
oveq2 |
|- ( n = j -> ( ( 1 / ( M + 1 ) ) ^ n ) = ( ( 1 / ( M + 1 ) ) ^ j ) ) |
| 72 |
71
|
oveq2d |
|- ( n = j -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ n ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 73 |
|
ovex |
|- ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) e. _V |
| 74 |
72 3 73
|
fvmpt |
|- ( j e. NN0 -> ( H ` j ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 75 |
74
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> ( H ` j ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 76 |
14 18
|
nndivred |
|- ( ph -> ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) e. RR ) |
| 77 |
76
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) e. RR ) |
| 78 |
4
|
peano2nnd |
|- ( ph -> ( M + 1 ) e. NN ) |
| 79 |
78
|
nnrecred |
|- ( ph -> ( 1 / ( M + 1 ) ) e. RR ) |
| 80 |
|
reexpcl |
|- ( ( ( 1 / ( M + 1 ) ) e. RR /\ j e. NN0 ) -> ( ( 1 / ( M + 1 ) ) ^ j ) e. RR ) |
| 81 |
79 80
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( ( 1 / ( M + 1 ) ) ^ j ) e. RR ) |
| 82 |
77 81
|
remulcld |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) e. RR ) |
| 83 |
67 64
|
reexpcld |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ ( M + j ) ) e. RR ) |
| 84 |
14
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ M ) e. RR ) |
| 85 |
64
|
faccld |
|- ( ( ph /\ j e. NN0 ) -> ( ! ` ( M + j ) ) e. NN ) |
| 86 |
85
|
nnred |
|- ( ( ph /\ j e. NN0 ) -> ( ! ` ( M + j ) ) e. RR ) |
| 87 |
86 82
|
remulcld |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) e. RR ) |
| 88 |
7
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> M e. NN0 ) |
| 89 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
| 90 |
23 89
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
| 91 |
|
uzaddcl |
|- ( ( M e. ( ZZ>= ` M ) /\ j e. NN0 ) -> ( M + j ) e. ( ZZ>= ` M ) ) |
| 92 |
90 91
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( M + j ) e. ( ZZ>= ` M ) ) |
| 93 |
5
|
absge0d |
|- ( ph -> 0 <_ ( abs ` A ) ) |
| 94 |
93
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> 0 <_ ( abs ` A ) ) |
| 95 |
6
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( abs ` A ) <_ 1 ) |
| 96 |
67 88 92 94 95
|
leexp2rd |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ ( M + j ) ) <_ ( ( abs ` A ) ^ M ) ) |
| 97 |
18
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ! ` M ) e. NN ) |
| 98 |
|
nnexpcl |
|- ( ( ( M + 1 ) e. NN /\ j e. NN0 ) -> ( ( M + 1 ) ^ j ) e. NN ) |
| 99 |
78 98
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( ( M + 1 ) ^ j ) e. NN ) |
| 100 |
97 99
|
nnmulcld |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) e. NN ) |
| 101 |
100
|
nnred |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) e. RR ) |
| 102 |
11 7 93
|
expge0d |
|- ( ph -> 0 <_ ( ( abs ` A ) ^ M ) ) |
| 103 |
14 102
|
jca |
|- ( ph -> ( ( ( abs ` A ) ^ M ) e. RR /\ 0 <_ ( ( abs ` A ) ^ M ) ) ) |
| 104 |
103
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ M ) e. RR /\ 0 <_ ( ( abs ` A ) ^ M ) ) ) |
| 105 |
|
faclbnd6 |
|- ( ( M e. NN0 /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) <_ ( ! ` ( M + j ) ) ) |
| 106 |
7 105
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) <_ ( ! ` ( M + j ) ) ) |
| 107 |
|
lemul1a |
|- ( ( ( ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) e. RR /\ ( ! ` ( M + j ) ) e. RR /\ ( ( ( abs ` A ) ^ M ) e. RR /\ 0 <_ ( ( abs ` A ) ^ M ) ) ) /\ ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) <_ ( ! ` ( M + j ) ) ) -> ( ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) x. ( ( abs ` A ) ^ M ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) ) |
| 108 |
101 86 104 106 107
|
syl31anc |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) x. ( ( abs ` A ) ^ M ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) ) |
| 109 |
86 84
|
remulcld |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) e. RR ) |
| 110 |
100
|
nnrpd |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) e. RR+ ) |
| 111 |
84 109 110
|
lemuldiv2d |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) x. ( ( abs ` A ) ^ M ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) <-> ( ( abs ` A ) ^ M ) <_ ( ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) ) ) |
| 112 |
108 111
|
mpbid |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ M ) <_ ( ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) ) |
| 113 |
85
|
nncnd |
|- ( ( ph /\ j e. NN0 ) -> ( ! ` ( M + j ) ) e. CC ) |
| 114 |
14
|
recnd |
|- ( ph -> ( ( abs ` A ) ^ M ) e. CC ) |
| 115 |
114
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ M ) e. CC ) |
| 116 |
100
|
nncnd |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) e. CC ) |
| 117 |
100
|
nnne0d |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) =/= 0 ) |
| 118 |
113 115 116 117
|
divassd |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) = ( ( ! ` ( M + j ) ) x. ( ( ( abs ` A ) ^ M ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) ) ) |
| 119 |
78
|
nncnd |
|- ( ph -> ( M + 1 ) e. CC ) |
| 120 |
119
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( M + 1 ) e. CC ) |
| 121 |
78
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( M + 1 ) e. NN ) |
| 122 |
121
|
nnne0d |
|- ( ( ph /\ j e. NN0 ) -> ( M + 1 ) =/= 0 ) |
| 123 |
|
nn0z |
|- ( j e. NN0 -> j e. ZZ ) |
| 124 |
123
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> j e. ZZ ) |
| 125 |
120 122 124
|
exprecd |
|- ( ( ph /\ j e. NN0 ) -> ( ( 1 / ( M + 1 ) ) ^ j ) = ( 1 / ( ( M + 1 ) ^ j ) ) ) |
| 126 |
125
|
oveq2d |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( 1 / ( ( M + 1 ) ^ j ) ) ) ) |
| 127 |
76
|
recnd |
|- ( ph -> ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) e. CC ) |
| 128 |
127
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) e. CC ) |
| 129 |
99
|
nncnd |
|- ( ( ph /\ j e. NN0 ) -> ( ( M + 1 ) ^ j ) e. CC ) |
| 130 |
99
|
nnne0d |
|- ( ( ph /\ j e. NN0 ) -> ( ( M + 1 ) ^ j ) =/= 0 ) |
| 131 |
128 129 130
|
divrecd |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) / ( ( M + 1 ) ^ j ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( 1 / ( ( M + 1 ) ^ j ) ) ) ) |
| 132 |
18
|
nncnd |
|- ( ph -> ( ! ` M ) e. CC ) |
| 133 |
132
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ! ` M ) e. CC ) |
| 134 |
|
facne0 |
|- ( M e. NN0 -> ( ! ` M ) =/= 0 ) |
| 135 |
7 134
|
syl |
|- ( ph -> ( ! ` M ) =/= 0 ) |
| 136 |
135
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ! ` M ) =/= 0 ) |
| 137 |
115 133 129 136 130
|
divdiv1d |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) / ( ( M + 1 ) ^ j ) ) = ( ( ( abs ` A ) ^ M ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) ) |
| 138 |
126 131 137
|
3eqtr2rd |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ M ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 139 |
138
|
oveq2d |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` ( M + j ) ) x. ( ( ( abs ` A ) ^ M ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) ) = ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) |
| 140 |
118 139
|
eqtrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) = ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) |
| 141 |
112 140
|
breqtrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ M ) <_ ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) |
| 142 |
83 84 87 96 141
|
letrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ ( M + j ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) |
| 143 |
85
|
nngt0d |
|- ( ( ph /\ j e. NN0 ) -> 0 < ( ! ` ( M + j ) ) ) |
| 144 |
|
ledivmul |
|- ( ( ( ( abs ` A ) ^ ( M + j ) ) e. RR /\ ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) e. RR /\ ( ( ! ` ( M + j ) ) e. RR /\ 0 < ( ! ` ( M + j ) ) ) ) -> ( ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) <_ ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) <-> ( ( abs ` A ) ^ ( M + j ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) ) |
| 145 |
83 82 86 143 144
|
syl112anc |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) <_ ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) <-> ( ( abs ` A ) ^ ( M + j ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) ) |
| 146 |
142 145
|
mpbird |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) <_ ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 147 |
66 146
|
eqbrtrd |
|- ( ( ph /\ j e. NN0 ) -> ( G ` ( M + j ) ) <_ ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 148 |
|
0z |
|- 0 e. ZZ |
| 149 |
23
|
znegcld |
|- ( ph -> -u M e. ZZ ) |
| 150 |
60
|
seqshft |
|- ( ( 0 e. ZZ /\ -u M e. ZZ ) -> seq 0 ( + , ( G shift -u M ) ) = ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ) |
| 151 |
148 149 150
|
sylancr |
|- ( ph -> seq 0 ( + , ( G shift -u M ) ) = ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ) |
| 152 |
|
0cn |
|- 0 e. CC |
| 153 |
|
subneg |
|- ( ( 0 e. CC /\ M e. CC ) -> ( 0 - -u M ) = ( 0 + M ) ) |
| 154 |
152 153
|
mpan |
|- ( M e. CC -> ( 0 - -u M ) = ( 0 + M ) ) |
| 155 |
|
addlid |
|- ( M e. CC -> ( 0 + M ) = M ) |
| 156 |
154 155
|
eqtrd |
|- ( M e. CC -> ( 0 - -u M ) = M ) |
| 157 |
56 156
|
syl |
|- ( ph -> ( 0 - -u M ) = M ) |
| 158 |
157
|
seqeq1d |
|- ( ph -> seq ( 0 - -u M ) ( + , G ) = seq M ( + , G ) ) |
| 159 |
158 47
|
eqbrtrd |
|- ( ph -> seq ( 0 - -u M ) ( + , G ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
| 160 |
|
seqex |
|- seq ( 0 - -u M ) ( + , G ) e. _V |
| 161 |
|
climshft |
|- ( ( -u M e. ZZ /\ seq ( 0 - -u M ) ( + , G ) e. _V ) -> ( ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) <-> seq ( 0 - -u M ) ( + , G ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) ) |
| 162 |
149 160 161
|
sylancl |
|- ( ph -> ( ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) <-> seq ( 0 - -u M ) ( + , G ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) ) |
| 163 |
159 162
|
mpbird |
|- ( ph -> ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
| 164 |
|
ovex |
|- ( seq ( 0 - -u M ) ( + , G ) shift -u M ) e. _V |
| 165 |
|
sumex |
|- sum_ k e. ( ZZ>= ` M ) ( G ` k ) e. _V |
| 166 |
164 165
|
breldm |
|- ( ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) -> ( seq ( 0 - -u M ) ( + , G ) shift -u M ) e. dom ~~> ) |
| 167 |
163 166
|
syl |
|- ( ph -> ( seq ( 0 - -u M ) ( + , G ) shift -u M ) e. dom ~~> ) |
| 168 |
151 167
|
eqeltrd |
|- ( ph -> seq 0 ( + , ( G shift -u M ) ) e. dom ~~> ) |
| 169 |
4
|
nnge1d |
|- ( ph -> 1 <_ M ) |
| 170 |
|
1nn |
|- 1 e. NN |
| 171 |
|
nnleltp1 |
|- ( ( 1 e. NN /\ M e. NN ) -> ( 1 <_ M <-> 1 < ( M + 1 ) ) ) |
| 172 |
170 4 171
|
sylancr |
|- ( ph -> ( 1 <_ M <-> 1 < ( M + 1 ) ) ) |
| 173 |
169 172
|
mpbid |
|- ( ph -> 1 < ( M + 1 ) ) |
| 174 |
16
|
nn0ge0d |
|- ( ph -> 0 <_ ( M + 1 ) ) |
| 175 |
17 174
|
absidd |
|- ( ph -> ( abs ` ( M + 1 ) ) = ( M + 1 ) ) |
| 176 |
173 175
|
breqtrrd |
|- ( ph -> 1 < ( abs ` ( M + 1 ) ) ) |
| 177 |
|
eqid |
|- ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) = ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) |
| 178 |
|
ovex |
|- ( ( 1 / ( M + 1 ) ) ^ j ) e. _V |
| 179 |
71 177 178
|
fvmpt |
|- ( j e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ` j ) = ( ( 1 / ( M + 1 ) ) ^ j ) ) |
| 180 |
179
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ` j ) = ( ( 1 / ( M + 1 ) ) ^ j ) ) |
| 181 |
119 176 180
|
georeclim |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ) ~~> ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) ) |
| 182 |
81
|
recnd |
|- ( ( ph /\ j e. NN0 ) -> ( ( 1 / ( M + 1 ) ) ^ j ) e. CC ) |
| 183 |
180 182
|
eqeltrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ` j ) e. CC ) |
| 184 |
180
|
oveq2d |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ` j ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 185 |
75 184
|
eqtr4d |
|- ( ( ph /\ j e. NN0 ) -> ( H ` j ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ` j ) ) ) |
| 186 |
54 55 127 181 183 185
|
isermulc2 |
|- ( ph -> seq 0 ( + , H ) ~~> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) ) ) |
| 187 |
|
ax-1cn |
|- 1 e. CC |
| 188 |
|
pncan |
|- ( ( M e. CC /\ 1 e. CC ) -> ( ( M + 1 ) - 1 ) = M ) |
| 189 |
56 187 188
|
sylancl |
|- ( ph -> ( ( M + 1 ) - 1 ) = M ) |
| 190 |
189
|
oveq2d |
|- ( ph -> ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) = ( ( M + 1 ) / M ) ) |
| 191 |
190
|
oveq2d |
|- ( ph -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / M ) ) ) |
| 192 |
17 4
|
nndivred |
|- ( ph -> ( ( M + 1 ) / M ) e. RR ) |
| 193 |
192
|
recnd |
|- ( ph -> ( ( M + 1 ) / M ) e. CC ) |
| 194 |
114 193 132 135
|
div23d |
|- ( ph -> ( ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / M ) ) / ( ! ` M ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / M ) ) ) |
| 195 |
191 194
|
eqtr4d |
|- ( ph -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) ) = ( ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / M ) ) / ( ! ` M ) ) ) |
| 196 |
114 193 132 135
|
divassd |
|- ( ph -> ( ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / M ) ) / ( ! ` M ) ) = ( ( ( abs ` A ) ^ M ) x. ( ( ( M + 1 ) / M ) / ( ! ` M ) ) ) ) |
| 197 |
4
|
nnne0d |
|- ( ph -> M =/= 0 ) |
| 198 |
119 56 132 197 135
|
divdiv1d |
|- ( ph -> ( ( ( M + 1 ) / M ) / ( ! ` M ) ) = ( ( M + 1 ) / ( M x. ( ! ` M ) ) ) ) |
| 199 |
56 132
|
mulcomd |
|- ( ph -> ( M x. ( ! ` M ) ) = ( ( ! ` M ) x. M ) ) |
| 200 |
199
|
oveq2d |
|- ( ph -> ( ( M + 1 ) / ( M x. ( ! ` M ) ) ) = ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) |
| 201 |
198 200
|
eqtrd |
|- ( ph -> ( ( ( M + 1 ) / M ) / ( ! ` M ) ) = ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) |
| 202 |
201
|
oveq2d |
|- ( ph -> ( ( ( abs ` A ) ^ M ) x. ( ( ( M + 1 ) / M ) / ( ! ` M ) ) ) = ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
| 203 |
195 196 202
|
3eqtrd |
|- ( ph -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) ) = ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
| 204 |
186 203
|
breqtrd |
|- ( ph -> seq 0 ( + , H ) ~~> ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
| 205 |
|
seqex |
|- seq 0 ( + , H ) e. _V |
| 206 |
|
ovex |
|- ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) e. _V |
| 207 |
205 206
|
breldm |
|- ( seq 0 ( + , H ) ~~> ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) -> seq 0 ( + , H ) e. dom ~~> ) |
| 208 |
204 207
|
syl |
|- ( ph -> seq 0 ( + , H ) e. dom ~~> ) |
| 209 |
54 55 62 70 75 82 147 168 208
|
isumle |
|- ( ph -> sum_ j e. NN0 ( G ` ( M + j ) ) <_ sum_ j e. NN0 ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 210 |
|
eqid |
|- ( ZZ>= ` ( 0 + M ) ) = ( ZZ>= ` ( 0 + M ) ) |
| 211 |
|
fveq2 |
|- ( k = ( M + j ) -> ( G ` k ) = ( G ` ( M + j ) ) ) |
| 212 |
56
|
addlidd |
|- ( ph -> ( 0 + M ) = M ) |
| 213 |
212
|
fveq2d |
|- ( ph -> ( ZZ>= ` ( 0 + M ) ) = ( ZZ>= ` M ) ) |
| 214 |
213
|
eleq2d |
|- ( ph -> ( k e. ( ZZ>= ` ( 0 + M ) ) <-> k e. ( ZZ>= ` M ) ) ) |
| 215 |
214
|
biimpa |
|- ( ( ph /\ k e. ( ZZ>= ` ( 0 + M ) ) ) -> k e. ( ZZ>= ` M ) ) |
| 216 |
215 43
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` ( 0 + M ) ) ) -> ( G ` k ) e. CC ) |
| 217 |
54 210 211 23 55 216
|
isumshft |
|- ( ph -> sum_ k e. ( ZZ>= ` ( 0 + M ) ) ( G ` k ) = sum_ j e. NN0 ( G ` ( M + j ) ) ) |
| 218 |
213
|
sumeq1d |
|- ( ph -> sum_ k e. ( ZZ>= ` ( 0 + M ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
| 219 |
217 218
|
eqtr3d |
|- ( ph -> sum_ j e. NN0 ( G ` ( M + j ) ) = sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
| 220 |
82
|
recnd |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) e. CC ) |
| 221 |
54 55 75 220 204
|
isumclim |
|- ( ph -> sum_ j e. NN0 ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) = ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
| 222 |
209 219 221
|
3brtr3d |
|- ( ph -> sum_ k e. ( ZZ>= ` M ) ( G ` k ) <_ ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
| 223 |
10 13 21 53 222
|
letrd |
|- ( ph -> ( abs ` sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) <_ ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |