| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isumshft.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
isumshft.2 |
|- W = ( ZZ>= ` ( M + K ) ) |
| 3 |
|
isumshft.3 |
|- ( j = ( K + k ) -> A = B ) |
| 4 |
|
isumshft.4 |
|- ( ph -> K e. ZZ ) |
| 5 |
|
isumshft.5 |
|- ( ph -> M e. ZZ ) |
| 6 |
|
isumshft.6 |
|- ( ( ph /\ j e. W ) -> A e. CC ) |
| 7 |
5 4
|
zaddcld |
|- ( ph -> ( M + K ) e. ZZ ) |
| 8 |
2
|
eleq2i |
|- ( m e. W <-> m e. ( ZZ>= ` ( M + K ) ) ) |
| 9 |
4
|
zcnd |
|- ( ph -> K e. CC ) |
| 10 |
|
eluzelcn |
|- ( m e. ( ZZ>= ` ( M + K ) ) -> m e. CC ) |
| 11 |
10 2
|
eleq2s |
|- ( m e. W -> m e. CC ) |
| 12 |
1
|
fvexi |
|- Z e. _V |
| 13 |
12
|
mptex |
|- ( k e. Z |-> B ) e. _V |
| 14 |
13
|
shftval |
|- ( ( K e. CC /\ m e. CC ) -> ( ( ( k e. Z |-> B ) shift K ) ` m ) = ( ( k e. Z |-> B ) ` ( m - K ) ) ) |
| 15 |
9 11 14
|
syl2an |
|- ( ( ph /\ m e. W ) -> ( ( ( k e. Z |-> B ) shift K ) ` m ) = ( ( k e. Z |-> B ) ` ( m - K ) ) ) |
| 16 |
|
simpr |
|- ( ( ph /\ k e. Z ) -> k e. Z ) |
| 17 |
|
eqid |
|- ( k e. Z |-> B ) = ( k e. Z |-> B ) |
| 18 |
17
|
fvmpt2i |
|- ( k e. Z -> ( ( k e. Z |-> B ) ` k ) = ( _I ` B ) ) |
| 19 |
16 18
|
syl |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> B ) ` k ) = ( _I ` B ) ) |
| 20 |
|
eluzelcn |
|- ( k e. ( ZZ>= ` M ) -> k e. CC ) |
| 21 |
20 1
|
eleq2s |
|- ( k e. Z -> k e. CC ) |
| 22 |
|
addcom |
|- ( ( K e. CC /\ k e. CC ) -> ( K + k ) = ( k + K ) ) |
| 23 |
9 21 22
|
syl2an |
|- ( ( ph /\ k e. Z ) -> ( K + k ) = ( k + K ) ) |
| 24 |
|
id |
|- ( k e. Z -> k e. Z ) |
| 25 |
24 1
|
eleqtrdi |
|- ( k e. Z -> k e. ( ZZ>= ` M ) ) |
| 26 |
|
eluzadd |
|- ( ( k e. ( ZZ>= ` M ) /\ K e. ZZ ) -> ( k + K ) e. ( ZZ>= ` ( M + K ) ) ) |
| 27 |
25 4 26
|
syl2anr |
|- ( ( ph /\ k e. Z ) -> ( k + K ) e. ( ZZ>= ` ( M + K ) ) ) |
| 28 |
23 27
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( K + k ) e. ( ZZ>= ` ( M + K ) ) ) |
| 29 |
28 2
|
eleqtrrdi |
|- ( ( ph /\ k e. Z ) -> ( K + k ) e. W ) |
| 30 |
|
eqid |
|- ( j e. W |-> A ) = ( j e. W |-> A ) |
| 31 |
3 30
|
fvmpti |
|- ( ( K + k ) e. W -> ( ( j e. W |-> A ) ` ( K + k ) ) = ( _I ` B ) ) |
| 32 |
29 31
|
syl |
|- ( ( ph /\ k e. Z ) -> ( ( j e. W |-> A ) ` ( K + k ) ) = ( _I ` B ) ) |
| 33 |
19 32
|
eqtr4d |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> B ) ` k ) = ( ( j e. W |-> A ) ` ( K + k ) ) ) |
| 34 |
33
|
ralrimiva |
|- ( ph -> A. k e. Z ( ( k e. Z |-> B ) ` k ) = ( ( j e. W |-> A ) ` ( K + k ) ) ) |
| 35 |
|
nffvmpt1 |
|- F/_ k ( ( k e. Z |-> B ) ` n ) |
| 36 |
35
|
nfeq1 |
|- F/ k ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) |
| 37 |
|
fveq2 |
|- ( k = n -> ( ( k e. Z |-> B ) ` k ) = ( ( k e. Z |-> B ) ` n ) ) |
| 38 |
|
oveq2 |
|- ( k = n -> ( K + k ) = ( K + n ) ) |
| 39 |
38
|
fveq2d |
|- ( k = n -> ( ( j e. W |-> A ) ` ( K + k ) ) = ( ( j e. W |-> A ) ` ( K + n ) ) ) |
| 40 |
37 39
|
eqeq12d |
|- ( k = n -> ( ( ( k e. Z |-> B ) ` k ) = ( ( j e. W |-> A ) ` ( K + k ) ) <-> ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) ) ) |
| 41 |
36 40
|
rspc |
|- ( n e. Z -> ( A. k e. Z ( ( k e. Z |-> B ) ` k ) = ( ( j e. W |-> A ) ` ( K + k ) ) -> ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) ) ) |
| 42 |
34 41
|
mpan9 |
|- ( ( ph /\ n e. Z ) -> ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) ) |
| 43 |
42
|
ralrimiva |
|- ( ph -> A. n e. Z ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) ) |
| 44 |
5
|
adantr |
|- ( ( ph /\ m e. W ) -> M e. ZZ ) |
| 45 |
4
|
adantr |
|- ( ( ph /\ m e. W ) -> K e. ZZ ) |
| 46 |
|
simpr |
|- ( ( ph /\ m e. W ) -> m e. W ) |
| 47 |
46 2
|
eleqtrdi |
|- ( ( ph /\ m e. W ) -> m e. ( ZZ>= ` ( M + K ) ) ) |
| 48 |
|
eluzsub |
|- ( ( M e. ZZ /\ K e. ZZ /\ m e. ( ZZ>= ` ( M + K ) ) ) -> ( m - K ) e. ( ZZ>= ` M ) ) |
| 49 |
44 45 47 48
|
syl3anc |
|- ( ( ph /\ m e. W ) -> ( m - K ) e. ( ZZ>= ` M ) ) |
| 50 |
49 1
|
eleqtrrdi |
|- ( ( ph /\ m e. W ) -> ( m - K ) e. Z ) |
| 51 |
|
fveq2 |
|- ( n = ( m - K ) -> ( ( k e. Z |-> B ) ` n ) = ( ( k e. Z |-> B ) ` ( m - K ) ) ) |
| 52 |
|
oveq2 |
|- ( n = ( m - K ) -> ( K + n ) = ( K + ( m - K ) ) ) |
| 53 |
52
|
fveq2d |
|- ( n = ( m - K ) -> ( ( j e. W |-> A ) ` ( K + n ) ) = ( ( j e. W |-> A ) ` ( K + ( m - K ) ) ) ) |
| 54 |
51 53
|
eqeq12d |
|- ( n = ( m - K ) -> ( ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) <-> ( ( k e. Z |-> B ) ` ( m - K ) ) = ( ( j e. W |-> A ) ` ( K + ( m - K ) ) ) ) ) |
| 55 |
54
|
rspccva |
|- ( ( A. n e. Z ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) /\ ( m - K ) e. Z ) -> ( ( k e. Z |-> B ) ` ( m - K ) ) = ( ( j e. W |-> A ) ` ( K + ( m - K ) ) ) ) |
| 56 |
43 50 55
|
syl2an2r |
|- ( ( ph /\ m e. W ) -> ( ( k e. Z |-> B ) ` ( m - K ) ) = ( ( j e. W |-> A ) ` ( K + ( m - K ) ) ) ) |
| 57 |
|
pncan3 |
|- ( ( K e. CC /\ m e. CC ) -> ( K + ( m - K ) ) = m ) |
| 58 |
9 11 57
|
syl2an |
|- ( ( ph /\ m e. W ) -> ( K + ( m - K ) ) = m ) |
| 59 |
58
|
fveq2d |
|- ( ( ph /\ m e. W ) -> ( ( j e. W |-> A ) ` ( K + ( m - K ) ) ) = ( ( j e. W |-> A ) ` m ) ) |
| 60 |
15 56 59
|
3eqtrrd |
|- ( ( ph /\ m e. W ) -> ( ( j e. W |-> A ) ` m ) = ( ( ( k e. Z |-> B ) shift K ) ` m ) ) |
| 61 |
8 60
|
sylan2br |
|- ( ( ph /\ m e. ( ZZ>= ` ( M + K ) ) ) -> ( ( j e. W |-> A ) ` m ) = ( ( ( k e. Z |-> B ) shift K ) ` m ) ) |
| 62 |
7 61
|
seqfeq |
|- ( ph -> seq ( M + K ) ( + , ( j e. W |-> A ) ) = seq ( M + K ) ( + , ( ( k e. Z |-> B ) shift K ) ) ) |
| 63 |
62
|
breq1d |
|- ( ph -> ( seq ( M + K ) ( + , ( j e. W |-> A ) ) ~~> x <-> seq ( M + K ) ( + , ( ( k e. Z |-> B ) shift K ) ) ~~> x ) ) |
| 64 |
13
|
isershft |
|- ( ( M e. ZZ /\ K e. ZZ ) -> ( seq M ( + , ( k e. Z |-> B ) ) ~~> x <-> seq ( M + K ) ( + , ( ( k e. Z |-> B ) shift K ) ) ~~> x ) ) |
| 65 |
5 4 64
|
syl2anc |
|- ( ph -> ( seq M ( + , ( k e. Z |-> B ) ) ~~> x <-> seq ( M + K ) ( + , ( ( k e. Z |-> B ) shift K ) ) ~~> x ) ) |
| 66 |
63 65
|
bitr4d |
|- ( ph -> ( seq ( M + K ) ( + , ( j e. W |-> A ) ) ~~> x <-> seq M ( + , ( k e. Z |-> B ) ) ~~> x ) ) |
| 67 |
66
|
iotabidv |
|- ( ph -> ( iota x seq ( M + K ) ( + , ( j e. W |-> A ) ) ~~> x ) = ( iota x seq M ( + , ( k e. Z |-> B ) ) ~~> x ) ) |
| 68 |
|
df-fv |
|- ( ~~> ` seq ( M + K ) ( + , ( j e. W |-> A ) ) ) = ( iota x seq ( M + K ) ( + , ( j e. W |-> A ) ) ~~> x ) |
| 69 |
|
df-fv |
|- ( ~~> ` seq M ( + , ( k e. Z |-> B ) ) ) = ( iota x seq M ( + , ( k e. Z |-> B ) ) ~~> x ) |
| 70 |
67 68 69
|
3eqtr4g |
|- ( ph -> ( ~~> ` seq ( M + K ) ( + , ( j e. W |-> A ) ) ) = ( ~~> ` seq M ( + , ( k e. Z |-> B ) ) ) ) |
| 71 |
|
eqidd |
|- ( ( ph /\ m e. W ) -> ( ( j e. W |-> A ) ` m ) = ( ( j e. W |-> A ) ` m ) ) |
| 72 |
6
|
fmpttd |
|- ( ph -> ( j e. W |-> A ) : W --> CC ) |
| 73 |
72
|
ffvelcdmda |
|- ( ( ph /\ m e. W ) -> ( ( j e. W |-> A ) ` m ) e. CC ) |
| 74 |
2 7 71 73
|
isum |
|- ( ph -> sum_ m e. W ( ( j e. W |-> A ) ` m ) = ( ~~> ` seq ( M + K ) ( + , ( j e. W |-> A ) ) ) ) |
| 75 |
|
eqidd |
|- ( ( ph /\ n e. Z ) -> ( ( k e. Z |-> B ) ` n ) = ( ( k e. Z |-> B ) ` n ) ) |
| 76 |
29
|
ralrimiva |
|- ( ph -> A. k e. Z ( K + k ) e. W ) |
| 77 |
38
|
eleq1d |
|- ( k = n -> ( ( K + k ) e. W <-> ( K + n ) e. W ) ) |
| 78 |
77
|
rspccva |
|- ( ( A. k e. Z ( K + k ) e. W /\ n e. Z ) -> ( K + n ) e. W ) |
| 79 |
76 78
|
sylan |
|- ( ( ph /\ n e. Z ) -> ( K + n ) e. W ) |
| 80 |
|
ffvelcdm |
|- ( ( ( j e. W |-> A ) : W --> CC /\ ( K + n ) e. W ) -> ( ( j e. W |-> A ) ` ( K + n ) ) e. CC ) |
| 81 |
72 79 80
|
syl2an2r |
|- ( ( ph /\ n e. Z ) -> ( ( j e. W |-> A ) ` ( K + n ) ) e. CC ) |
| 82 |
42 81
|
eqeltrd |
|- ( ( ph /\ n e. Z ) -> ( ( k e. Z |-> B ) ` n ) e. CC ) |
| 83 |
1 5 75 82
|
isum |
|- ( ph -> sum_ n e. Z ( ( k e. Z |-> B ) ` n ) = ( ~~> ` seq M ( + , ( k e. Z |-> B ) ) ) ) |
| 84 |
70 74 83
|
3eqtr4d |
|- ( ph -> sum_ m e. W ( ( j e. W |-> A ) ` m ) = sum_ n e. Z ( ( k e. Z |-> B ) ` n ) ) |
| 85 |
|
sumfc |
|- sum_ m e. W ( ( j e. W |-> A ) ` m ) = sum_ j e. W A |
| 86 |
|
sumfc |
|- sum_ n e. Z ( ( k e. Z |-> B ) ` n ) = sum_ k e. Z B |
| 87 |
84 85 86
|
3eqtr3g |
|- ( ph -> sum_ j e. W A = sum_ k e. Z B ) |