Step |
Hyp |
Ref |
Expression |
1 |
|
isumsplit.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
isumsplit.2 |
|- W = ( ZZ>= ` N ) |
3 |
|
isumsplit.3 |
|- ( ph -> N e. Z ) |
4 |
|
isumsplit.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
5 |
|
isumsplit.5 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
6 |
|
isumsplit.6 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
7 |
3 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
8 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
9 |
7 8
|
syl |
|- ( ph -> M e. ZZ ) |
10 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
11 |
7 10
|
syl |
|- ( ph -> N e. ZZ ) |
12 |
|
uzss |
|- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
13 |
7 12
|
syl |
|- ( ph -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
14 |
13 2 1
|
3sstr4g |
|- ( ph -> W C_ Z ) |
15 |
14
|
sselda |
|- ( ( ph /\ k e. W ) -> k e. Z ) |
16 |
15 4
|
syldan |
|- ( ( ph /\ k e. W ) -> ( F ` k ) = A ) |
17 |
15 5
|
syldan |
|- ( ( ph /\ k e. W ) -> A e. CC ) |
18 |
4 5
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
19 |
1 3 18
|
iserex |
|- ( ph -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) |
20 |
6 19
|
mpbid |
|- ( ph -> seq N ( + , F ) e. dom ~~> ) |
21 |
2 11 16 17 20
|
isumclim2 |
|- ( ph -> seq N ( + , F ) ~~> sum_ k e. W A ) |
22 |
|
fzfid |
|- ( ph -> ( M ... ( N - 1 ) ) e. Fin ) |
23 |
|
elfzuz |
|- ( k e. ( M ... ( N - 1 ) ) -> k e. ( ZZ>= ` M ) ) |
24 |
23 1
|
eleqtrrdi |
|- ( k e. ( M ... ( N - 1 ) ) -> k e. Z ) |
25 |
24 5
|
sylan2 |
|- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> A e. CC ) |
26 |
22 25
|
fsumcl |
|- ( ph -> sum_ k e. ( M ... ( N - 1 ) ) A e. CC ) |
27 |
15 18
|
syldan |
|- ( ( ph /\ k e. W ) -> ( F ` k ) e. CC ) |
28 |
2 11 27
|
serf |
|- ( ph -> seq N ( + , F ) : W --> CC ) |
29 |
28
|
ffvelrnda |
|- ( ( ph /\ j e. W ) -> ( seq N ( + , F ) ` j ) e. CC ) |
30 |
9
|
zred |
|- ( ph -> M e. RR ) |
31 |
30
|
ltm1d |
|- ( ph -> ( M - 1 ) < M ) |
32 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
33 |
|
fzn |
|- ( ( M e. ZZ /\ ( M - 1 ) e. ZZ ) -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) |
34 |
9 32 33
|
syl2anc2 |
|- ( ph -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) |
35 |
31 34
|
mpbid |
|- ( ph -> ( M ... ( M - 1 ) ) = (/) ) |
36 |
35
|
sumeq1d |
|- ( ph -> sum_ k e. ( M ... ( M - 1 ) ) A = sum_ k e. (/) A ) |
37 |
36
|
adantr |
|- ( ( ph /\ j e. W ) -> sum_ k e. ( M ... ( M - 1 ) ) A = sum_ k e. (/) A ) |
38 |
|
sum0 |
|- sum_ k e. (/) A = 0 |
39 |
37 38
|
eqtrdi |
|- ( ( ph /\ j e. W ) -> sum_ k e. ( M ... ( M - 1 ) ) A = 0 ) |
40 |
39
|
oveq1d |
|- ( ( ph /\ j e. W ) -> ( sum_ k e. ( M ... ( M - 1 ) ) A + ( seq M ( + , F ) ` j ) ) = ( 0 + ( seq M ( + , F ) ` j ) ) ) |
41 |
14
|
sselda |
|- ( ( ph /\ j e. W ) -> j e. Z ) |
42 |
1 9 18
|
serf |
|- ( ph -> seq M ( + , F ) : Z --> CC ) |
43 |
42
|
ffvelrnda |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. CC ) |
44 |
41 43
|
syldan |
|- ( ( ph /\ j e. W ) -> ( seq M ( + , F ) ` j ) e. CC ) |
45 |
44
|
addid2d |
|- ( ( ph /\ j e. W ) -> ( 0 + ( seq M ( + , F ) ` j ) ) = ( seq M ( + , F ) ` j ) ) |
46 |
40 45
|
eqtr2d |
|- ( ( ph /\ j e. W ) -> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( M - 1 ) ) A + ( seq M ( + , F ) ` j ) ) ) |
47 |
|
oveq1 |
|- ( N = M -> ( N - 1 ) = ( M - 1 ) ) |
48 |
47
|
oveq2d |
|- ( N = M -> ( M ... ( N - 1 ) ) = ( M ... ( M - 1 ) ) ) |
49 |
48
|
sumeq1d |
|- ( N = M -> sum_ k e. ( M ... ( N - 1 ) ) A = sum_ k e. ( M ... ( M - 1 ) ) A ) |
50 |
|
seqeq1 |
|- ( N = M -> seq N ( + , F ) = seq M ( + , F ) ) |
51 |
50
|
fveq1d |
|- ( N = M -> ( seq N ( + , F ) ` j ) = ( seq M ( + , F ) ` j ) ) |
52 |
49 51
|
oveq12d |
|- ( N = M -> ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) = ( sum_ k e. ( M ... ( M - 1 ) ) A + ( seq M ( + , F ) ` j ) ) ) |
53 |
52
|
eqeq2d |
|- ( N = M -> ( ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) <-> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( M - 1 ) ) A + ( seq M ( + , F ) ` j ) ) ) ) |
54 |
46 53
|
syl5ibrcom |
|- ( ( ph /\ j e. W ) -> ( N = M -> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) ) ) |
55 |
|
addcl |
|- ( ( k e. CC /\ m e. CC ) -> ( k + m ) e. CC ) |
56 |
55
|
adantl |
|- ( ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ ( k e. CC /\ m e. CC ) ) -> ( k + m ) e. CC ) |
57 |
|
addass |
|- ( ( k e. CC /\ m e. CC /\ x e. CC ) -> ( ( k + m ) + x ) = ( k + ( m + x ) ) ) |
58 |
57
|
adantl |
|- ( ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ ( k e. CC /\ m e. CC /\ x e. CC ) ) -> ( ( k + m ) + x ) = ( k + ( m + x ) ) ) |
59 |
|
simplr |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> j e. W ) |
60 |
|
simpll |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ph ) |
61 |
11
|
zcnd |
|- ( ph -> N e. CC ) |
62 |
|
ax-1cn |
|- 1 e. CC |
63 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
64 |
61 62 63
|
sylancl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
65 |
64
|
eqcomd |
|- ( ph -> N = ( ( N - 1 ) + 1 ) ) |
66 |
60 65
|
syl |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N = ( ( N - 1 ) + 1 ) ) |
67 |
66
|
fveq2d |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ZZ>= ` N ) = ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
68 |
2 67
|
eqtrid |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> W = ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
69 |
59 68
|
eleqtrd |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> j e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
70 |
9
|
adantr |
|- ( ( ph /\ j e. W ) -> M e. ZZ ) |
71 |
|
eluzp1m1 |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
72 |
70 71
|
sylan |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
73 |
|
elfzuz |
|- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
74 |
73 1
|
eleqtrrdi |
|- ( k e. ( M ... j ) -> k e. Z ) |
75 |
60 74 18
|
syl2an |
|- ( ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
76 |
56 58 69 72 75
|
seqsplit |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( + , F ) ` j ) = ( ( seq M ( + , F ) ` ( N - 1 ) ) + ( seq ( ( N - 1 ) + 1 ) ( + , F ) ` j ) ) ) |
77 |
60 24 4
|
syl2an |
|- ( ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> ( F ` k ) = A ) |
78 |
60 24 5
|
syl2an |
|- ( ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> A e. CC ) |
79 |
77 72 78
|
fsumser |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ... ( N - 1 ) ) A = ( seq M ( + , F ) ` ( N - 1 ) ) ) |
80 |
66
|
seqeq1d |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> seq N ( + , F ) = seq ( ( N - 1 ) + 1 ) ( + , F ) ) |
81 |
80
|
fveq1d |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq N ( + , F ) ` j ) = ( seq ( ( N - 1 ) + 1 ) ( + , F ) ` j ) ) |
82 |
79 81
|
oveq12d |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) = ( ( seq M ( + , F ) ` ( N - 1 ) ) + ( seq ( ( N - 1 ) + 1 ) ( + , F ) ` j ) ) ) |
83 |
76 82
|
eqtr4d |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) ) |
84 |
83
|
ex |
|- ( ( ph /\ j e. W ) -> ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) ) ) |
85 |
|
uzp1 |
|- ( N e. ( ZZ>= ` M ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
86 |
7 85
|
syl |
|- ( ph -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
87 |
86
|
adantr |
|- ( ( ph /\ j e. W ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
88 |
54 84 87
|
mpjaod |
|- ( ( ph /\ j e. W ) -> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) ) |
89 |
2 11 21 26 6 29 88
|
climaddc2 |
|- ( ph -> seq M ( + , F ) ~~> ( sum_ k e. ( M ... ( N - 1 ) ) A + sum_ k e. W A ) ) |
90 |
1 9 4 5 89
|
isumclim |
|- ( ph -> sum_ k e. Z A = ( sum_ k e. ( M ... ( N - 1 ) ) A + sum_ k e. W A ) ) |