Metamath Proof Explorer


Theorem isumshft

Description: Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumshft.1 Z = M
isumshft.2 W = M + K
isumshft.3 j = K + k A = B
isumshft.4 φ K
isumshft.5 φ M
isumshft.6 φ j W A
Assertion isumshft φ j W A = k Z B

Proof

Step Hyp Ref Expression
1 isumshft.1 Z = M
2 isumshft.2 W = M + K
3 isumshft.3 j = K + k A = B
4 isumshft.4 φ K
5 isumshft.5 φ M
6 isumshft.6 φ j W A
7 5 4 zaddcld φ M + K
8 2 eleq2i m W m M + K
9 4 zcnd φ K
10 eluzelcn m M + K m
11 10 2 eleq2s m W m
12 1 fvexi Z V
13 12 mptex k Z B V
14 13 shftval K m k Z B shift K m = k Z B m K
15 9 11 14 syl2an φ m W k Z B shift K m = k Z B m K
16 simpr φ k Z k Z
17 eqid k Z B = k Z B
18 17 fvmpt2i k Z k Z B k = I B
19 16 18 syl φ k Z k Z B k = I B
20 eluzelcn k M k
21 20 1 eleq2s k Z k
22 addcom K k K + k = k + K
23 9 21 22 syl2an φ k Z K + k = k + K
24 id k Z k Z
25 24 1 eleqtrdi k Z k M
26 eluzadd k M K k + K M + K
27 25 4 26 syl2anr φ k Z k + K M + K
28 23 27 eqeltrd φ k Z K + k M + K
29 28 2 eleqtrrdi φ k Z K + k W
30 eqid j W A = j W A
31 3 30 fvmpti K + k W j W A K + k = I B
32 29 31 syl φ k Z j W A K + k = I B
33 19 32 eqtr4d φ k Z k Z B k = j W A K + k
34 33 ralrimiva φ k Z k Z B k = j W A K + k
35 nffvmpt1 _ k k Z B n
36 35 nfeq1 k k Z B n = j W A K + n
37 fveq2 k = n k Z B k = k Z B n
38 oveq2 k = n K + k = K + n
39 38 fveq2d k = n j W A K + k = j W A K + n
40 37 39 eqeq12d k = n k Z B k = j W A K + k k Z B n = j W A K + n
41 36 40 rspc n Z k Z k Z B k = j W A K + k k Z B n = j W A K + n
42 34 41 mpan9 φ n Z k Z B n = j W A K + n
43 42 ralrimiva φ n Z k Z B n = j W A K + n
44 5 adantr φ m W M
45 4 adantr φ m W K
46 simpr φ m W m W
47 46 2 eleqtrdi φ m W m M + K
48 eluzsub M K m M + K m K M
49 44 45 47 48 syl3anc φ m W m K M
50 49 1 eleqtrrdi φ m W m K Z
51 fveq2 n = m K k Z B n = k Z B m K
52 oveq2 n = m K K + n = K + m - K
53 52 fveq2d n = m K j W A K + n = j W A K + m - K
54 51 53 eqeq12d n = m K k Z B n = j W A K + n k Z B m K = j W A K + m - K
55 54 rspccva n Z k Z B n = j W A K + n m K Z k Z B m K = j W A K + m - K
56 43 50 55 syl2an2r φ m W k Z B m K = j W A K + m - K
57 pncan3 K m K + m - K = m
58 9 11 57 syl2an φ m W K + m - K = m
59 58 fveq2d φ m W j W A K + m - K = j W A m
60 15 56 59 3eqtrrd φ m W j W A m = k Z B shift K m
61 8 60 sylan2br φ m M + K j W A m = k Z B shift K m
62 7 61 seqfeq φ seq M + K + j W A = seq M + K + k Z B shift K
63 62 breq1d φ seq M + K + j W A x seq M + K + k Z B shift K x
64 13 isershft M K seq M + k Z B x seq M + K + k Z B shift K x
65 5 4 64 syl2anc φ seq M + k Z B x seq M + K + k Z B shift K x
66 63 65 bitr4d φ seq M + K + j W A x seq M + k Z B x
67 66 iotabidv φ ι x | seq M + K + j W A x = ι x | seq M + k Z B x
68 df-fv seq M + K + j W A = ι x | seq M + K + j W A x
69 df-fv seq M + k Z B = ι x | seq M + k Z B x
70 67 68 69 3eqtr4g φ seq M + K + j W A = seq M + k Z B
71 eqidd φ m W j W A m = j W A m
72 6 fmpttd φ j W A : W
73 72 ffvelrnda φ m W j W A m
74 2 7 71 73 isum φ m W j W A m = seq M + K + j W A
75 eqidd φ n Z k Z B n = k Z B n
76 29 ralrimiva φ k Z K + k W
77 38 eleq1d k = n K + k W K + n W
78 77 rspccva k Z K + k W n Z K + n W
79 76 78 sylan φ n Z K + n W
80 ffvelrn j W A : W K + n W j W A K + n
81 72 79 80 syl2an2r φ n Z j W A K + n
82 42 81 eqeltrd φ n Z k Z B n
83 1 5 75 82 isum φ n Z k Z B n = seq M + k Z B
84 70 74 83 3eqtr4d φ m W j W A m = n Z k Z B n
85 sumfc m W j W A m = j W A
86 sumfc n Z k Z B n = k Z B
87 84 85 86 3eqtr3g φ j W A = k Z B