Metamath Proof Explorer


Theorem isumshft

Description: Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumshft.1 Z=M
isumshft.2 W=M+K
isumshft.3 j=K+kA=B
isumshft.4 φK
isumshft.5 φM
isumshft.6 φjWA
Assertion isumshft φjWA=kZB

Proof

Step Hyp Ref Expression
1 isumshft.1 Z=M
2 isumshft.2 W=M+K
3 isumshft.3 j=K+kA=B
4 isumshft.4 φK
5 isumshft.5 φM
6 isumshft.6 φjWA
7 5 4 zaddcld φM+K
8 2 eleq2i mWmM+K
9 4 zcnd φK
10 eluzelcn mM+Km
11 10 2 eleq2s mWm
12 1 fvexi ZV
13 12 mptex kZBV
14 13 shftval KmkZBshiftKm=kZBmK
15 9 11 14 syl2an φmWkZBshiftKm=kZBmK
16 simpr φkZkZ
17 eqid kZB=kZB
18 17 fvmpt2i kZkZBk=IB
19 16 18 syl φkZkZBk=IB
20 eluzelcn kMk
21 20 1 eleq2s kZk
22 addcom KkK+k=k+K
23 9 21 22 syl2an φkZK+k=k+K
24 id kZkZ
25 24 1 eleqtrdi kZkM
26 eluzadd kMKk+KM+K
27 25 4 26 syl2anr φkZk+KM+K
28 23 27 eqeltrd φkZK+kM+K
29 28 2 eleqtrrdi φkZK+kW
30 eqid jWA=jWA
31 3 30 fvmpti K+kWjWAK+k=IB
32 29 31 syl φkZjWAK+k=IB
33 19 32 eqtr4d φkZkZBk=jWAK+k
34 33 ralrimiva φkZkZBk=jWAK+k
35 nffvmpt1 _kkZBn
36 35 nfeq1 kkZBn=jWAK+n
37 fveq2 k=nkZBk=kZBn
38 oveq2 k=nK+k=K+n
39 38 fveq2d k=njWAK+k=jWAK+n
40 37 39 eqeq12d k=nkZBk=jWAK+kkZBn=jWAK+n
41 36 40 rspc nZkZkZBk=jWAK+kkZBn=jWAK+n
42 34 41 mpan9 φnZkZBn=jWAK+n
43 42 ralrimiva φnZkZBn=jWAK+n
44 5 adantr φmWM
45 4 adantr φmWK
46 simpr φmWmW
47 46 2 eleqtrdi φmWmM+K
48 eluzsub MKmM+KmKM
49 44 45 47 48 syl3anc φmWmKM
50 49 1 eleqtrrdi φmWmKZ
51 fveq2 n=mKkZBn=kZBmK
52 oveq2 n=mKK+n=K+m-K
53 52 fveq2d n=mKjWAK+n=jWAK+m-K
54 51 53 eqeq12d n=mKkZBn=jWAK+nkZBmK=jWAK+m-K
55 54 rspccva nZkZBn=jWAK+nmKZkZBmK=jWAK+m-K
56 43 50 55 syl2an2r φmWkZBmK=jWAK+m-K
57 pncan3 KmK+m-K=m
58 9 11 57 syl2an φmWK+m-K=m
59 58 fveq2d φmWjWAK+m-K=jWAm
60 15 56 59 3eqtrrd φmWjWAm=kZBshiftKm
61 8 60 sylan2br φmM+KjWAm=kZBshiftKm
62 7 61 seqfeq φseqM+K+jWA=seqM+K+kZBshiftK
63 62 breq1d φseqM+K+jWAxseqM+K+kZBshiftKx
64 13 isershft MKseqM+kZBxseqM+K+kZBshiftKx
65 5 4 64 syl2anc φseqM+kZBxseqM+K+kZBshiftKx
66 63 65 bitr4d φseqM+K+jWAxseqM+kZBx
67 66 iotabidv φιx|seqM+K+jWAx=ιx|seqM+kZBx
68 df-fv seqM+K+jWA=ιx|seqM+K+jWAx
69 df-fv seqM+kZB=ιx|seqM+kZBx
70 67 68 69 3eqtr4g φseqM+K+jWA=seqM+kZB
71 eqidd φmWjWAm=jWAm
72 6 fmpttd φjWA:W
73 72 ffvelcdmda φmWjWAm
74 2 7 71 73 isum φmWjWAm=seqM+K+jWA
75 eqidd φnZkZBn=kZBn
76 29 ralrimiva φkZK+kW
77 38 eleq1d k=nK+kWK+nW
78 77 rspccva kZK+kWnZK+nW
79 76 78 sylan φnZK+nW
80 ffvelcdm jWA:WK+nWjWAK+n
81 72 79 80 syl2an2r φnZjWAK+n
82 42 81 eqeltrd φnZkZBn
83 1 5 75 82 isum φnZkZBn=seqM+kZB
84 70 74 83 3eqtr4d φmWjWAm=nZkZBn
85 sumfc mWjWAm=jWA
86 sumfc nZkZBn=kZB
87 84 85 86 3eqtr3g φjWA=kZB