Metamath Proof Explorer


Theorem isershft

Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis isershft.1 FV
Assertion isershft MNseqM+˙FAseqM+N+˙FshiftNA

Proof

Step Hyp Ref Expression
1 isershft.1 FV
2 zaddcl MNM+N
3 1 seqshft M+NNseqM+N+˙FshiftN=seqM+N-N+˙FshiftN
4 2 3 sylancom MNseqM+N+˙FshiftN=seqM+N-N+˙FshiftN
5 zcn MM
6 zcn NN
7 pncan MNM+N-N=M
8 5 6 7 syl2an MNM+N-N=M
9 8 seqeq1d MNseqM+N-N+˙F=seqM+˙F
10 9 oveq1d MNseqM+N-N+˙FshiftN=seqM+˙FshiftN
11 4 10 eqtrd MNseqM+N+˙FshiftN=seqM+˙FshiftN
12 11 breq1d MNseqM+N+˙FshiftNAseqM+˙FshiftNA
13 seqex seqM+˙FV
14 climshft NseqM+˙FVseqM+˙FshiftNAseqM+˙FA
15 13 14 mpan2 NseqM+˙FshiftNAseqM+˙FA
16 15 adantl MNseqM+˙FshiftNAseqM+˙FA
17 12 16 bitr2d MNseqM+˙FAseqM+N+˙FshiftNA