Metamath Proof Explorer


Theorem dvmptco

Description: Function-builder for derivative, chain rule. (Contributed by Mario Carneiro, 1-Sep-2014)

Ref Expression
Hypotheses dvmptco.s φS
dvmptco.t φT
dvmptco.a φxXAY
dvmptco.b φxXBV
dvmptco.c φyYC
dvmptco.d φyYDW
dvmptco.da φdxXAdSx=xXB
dvmptco.dc φdyYCdTy=yYD
dvmptco.e y=AC=E
dvmptco.f y=AD=F
Assertion dvmptco φdxXEdSx=xXFB

Proof

Step Hyp Ref Expression
1 dvmptco.s φS
2 dvmptco.t φT
3 dvmptco.a φxXAY
4 dvmptco.b φxXBV
5 dvmptco.c φyYC
6 dvmptco.d φyYDW
7 dvmptco.da φdxXAdSx=xXB
8 dvmptco.dc φdyYCdTy=yYD
9 dvmptco.e y=AC=E
10 dvmptco.f y=AD=F
11 5 fmpttd φyYC:Y
12 3 fmpttd φxXA:XY
13 8 dmeqd φdomdyYCdTy=domyYD
14 6 ralrimiva φyYDW
15 dmmptg yYDWdomyYD=Y
16 14 15 syl φdomyYD=Y
17 13 16 eqtrd φdomdyYCdTy=Y
18 7 dmeqd φdomdxXAdSx=domxXB
19 4 ralrimiva φxXBV
20 dmmptg xXBVdomxXB=X
21 19 20 syl φdomxXB=X
22 18 21 eqtrd φdomdxXAdSx=X
23 2 1 11 12 17 22 dvcof φSDyYCxXA=dyYCdTyxXA×fdxXAdSx
24 eqidd φxXA=xXA
25 eqidd φyYC=yYC
26 3 24 25 9 fmptco φyYCxXA=xXE
27 26 oveq2d φSDyYCxXA=dxXEdSx
28 ovex dxXAdSxV
29 28 dmex domdxXAdSxV
30 22 29 eqeltrrdi φXV
31 2 5 6 8 dvmptcl φyYD
32 8 31 fmpt3d φdyYCdTy:Y
33 fco dyYCdTy:YxXA:XYdyYCdTyxXA:X
34 32 12 33 syl2anc φdyYCdTyxXA:X
35 3 24 8 10 fmptco φdyYCdTyxXA=xXF
36 35 feq1d φdyYCdTyxXA:XxXF:X
37 34 36 mpbid φxXF:X
38 37 fvmptelcdm φxXF
39 30 38 4 35 7 offval2 φdyYCdTyxXA×fdxXAdSx=xXFB
40 23 27 39 3eqtr3d φdxXEdSx=xXFB